Metamath Proof Explorer


Theorem simp13r

Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012)

Ref Expression
Assertion simp13r
|- ( ( ( ch /\ th /\ ( ph /\ ps ) ) /\ ta /\ et ) -> ps )

Proof

Step Hyp Ref Expression
1 simp3r
 |-  ( ( ch /\ th /\ ( ph /\ ps ) ) -> ps )
2 1 3ad2ant1
 |-  ( ( ( ch /\ th /\ ( ph /\ ps ) ) /\ ta /\ et ) -> ps )