Step |
Hyp |
Ref |
Expression |
1 |
|
f1orel |
|- ( F : A -1-1-onto-> B -> Rel F ) |
2 |
|
dfrel2 |
|- ( Rel F <-> `' `' F = F ) |
3 |
1 2
|
sylib |
|- ( F : A -1-1-onto-> B -> `' `' F = F ) |
4 |
3
|
coeq2d |
|- ( F : A -1-1-onto-> B -> ( `' F o. `' `' F ) = ( `' F o. F ) ) |
5 |
|
f1ocnv |
|- ( F : A -1-1-onto-> B -> `' F : B -1-1-onto-> A ) |
6 |
|
f1ococnv2 |
|- ( `' F : B -1-1-onto-> A -> ( `' F o. `' `' F ) = ( _I |` A ) ) |
7 |
5 6
|
syl |
|- ( F : A -1-1-onto-> B -> ( `' F o. `' `' F ) = ( _I |` A ) ) |
8 |
4 7
|
eqtr3d |
|- ( F : A -1-1-onto-> B -> ( `' F o. F ) = ( _I |` A ) ) |