| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							f1orel | 
							 |-  ( F : A -1-1-onto-> B -> Rel F )  | 
						
						
							| 2 | 
							
								
							 | 
							dfrel2 | 
							 |-  ( Rel F <-> `' `' F = F )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							sylib | 
							 |-  ( F : A -1-1-onto-> B -> `' `' F = F )  | 
						
						
							| 4 | 
							
								3
							 | 
							coeq2d | 
							 |-  ( F : A -1-1-onto-> B -> ( `' F o. `' `' F ) = ( `' F o. F ) )  | 
						
						
							| 5 | 
							
								
							 | 
							f1ocnv | 
							 |-  ( F : A -1-1-onto-> B -> `' F : B -1-1-onto-> A )  | 
						
						
							| 6 | 
							
								
							 | 
							f1ococnv2 | 
							 |-  ( `' F : B -1-1-onto-> A -> ( `' F o. `' `' F ) = ( _I |` A ) )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							syl | 
							 |-  ( F : A -1-1-onto-> B -> ( `' F o. `' `' F ) = ( _I |` A ) )  | 
						
						
							| 8 | 
							
								4 7
							 | 
							eqtr3d | 
							 |-  ( F : A -1-1-onto-> B -> ( `' F o. F ) = ( _I |` A ) )  |