Metamath Proof Explorer


Theorem f1ococnv1

Description: The composition of a one-to-one onto function's converse and itself equals the identity relation restricted to the function's domain. (Contributed by NM, 13-Dec-2003)

Ref Expression
Assertion f1ococnv1 ( 𝐹 : 𝐴1-1-onto𝐵 → ( 𝐹𝐹 ) = ( I ↾ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 f1orel ( 𝐹 : 𝐴1-1-onto𝐵 → Rel 𝐹 )
2 dfrel2 ( Rel 𝐹 𝐹 = 𝐹 )
3 1 2 sylib ( 𝐹 : 𝐴1-1-onto𝐵 𝐹 = 𝐹 )
4 3 coeq2d ( 𝐹 : 𝐴1-1-onto𝐵 → ( 𝐹 𝐹 ) = ( 𝐹𝐹 ) )
5 f1ocnv ( 𝐹 : 𝐴1-1-onto𝐵 𝐹 : 𝐵1-1-onto𝐴 )
6 f1ococnv2 ( 𝐹 : 𝐵1-1-onto𝐴 → ( 𝐹 𝐹 ) = ( I ↾ 𝐴 ) )
7 5 6 syl ( 𝐹 : 𝐴1-1-onto𝐵 → ( 𝐹 𝐹 ) = ( I ↾ 𝐴 ) )
8 4 7 eqtr3d ( 𝐹 : 𝐴1-1-onto𝐵 → ( 𝐹𝐹 ) = ( I ↾ 𝐴 ) )