Description: The composition of a one-to-one onto function's converse and itself equals the identity relation restricted to the function's domain. (Contributed by NM, 13-Dec-2003)
Ref | Expression | ||
---|---|---|---|
Assertion | f1ococnv1 | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ( ◡ 𝐹 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1orel | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → Rel 𝐹 ) | |
2 | dfrel2 | ⊢ ( Rel 𝐹 ↔ ◡ ◡ 𝐹 = 𝐹 ) | |
3 | 1 2 | sylib | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ◡ ◡ 𝐹 = 𝐹 ) |
4 | 3 | coeq2d | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ( ◡ 𝐹 ∘ ◡ ◡ 𝐹 ) = ( ◡ 𝐹 ∘ 𝐹 ) ) |
5 | f1ocnv | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ◡ 𝐹 : 𝐵 –1-1-onto→ 𝐴 ) | |
6 | f1ococnv2 | ⊢ ( ◡ 𝐹 : 𝐵 –1-1-onto→ 𝐴 → ( ◡ 𝐹 ∘ ◡ ◡ 𝐹 ) = ( I ↾ 𝐴 ) ) | |
7 | 5 6 | syl | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ( ◡ 𝐹 ∘ ◡ ◡ 𝐹 ) = ( I ↾ 𝐴 ) ) |
8 | 4 7 | eqtr3d | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ( ◡ 𝐹 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) |