Metamath Proof Explorer


Theorem simpl3l

Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012) (Proof shortened by Wolf Lammen, 23-Jun-2022)

Ref Expression
Assertion simpl3l
|- ( ( ( ch /\ th /\ ( ph /\ ps ) ) /\ ta ) -> ph )

Proof

Step Hyp Ref Expression
1 simpll
 |-  ( ( ( ph /\ ps ) /\ ta ) -> ph )
2 1 3ad2antl3
 |-  ( ( ( ch /\ th /\ ( ph /\ ps ) ) /\ ta ) -> ph )