Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg42.l |
|- .<_ = ( le ` K ) |
2 |
|
cdlemg42.j |
|- .\/ = ( join ` K ) |
3 |
|
cdlemg42.a |
|- A = ( Atoms ` K ) |
4 |
|
cdlemg42.h |
|- H = ( LHyp ` K ) |
5 |
|
cdlemg42.t |
|- T = ( ( LTrn ` K ) ` W ) |
6 |
|
cdlemg42.r |
|- R = ( ( trL ` K ) ` W ) |
7 |
|
simp33 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( R ` F ) =/= ( R ` G ) ) |
8 |
|
simpl1l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) /\ ( G ` P ) .<_ ( P .\/ ( F ` P ) ) ) -> K e. HL ) |
9 |
|
simp31l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) -> P e. A ) |
10 |
9
|
adantr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) /\ ( G ` P ) .<_ ( P .\/ ( F ` P ) ) ) -> P e. A ) |
11 |
|
simp1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( K e. HL /\ W e. H ) ) |
12 |
|
simp2l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) -> F e. T ) |
13 |
1 3 4 5
|
ltrnat |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ P e. A ) -> ( F ` P ) e. A ) |
14 |
11 12 9 13
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( F ` P ) e. A ) |
15 |
14
|
adantr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) /\ ( G ` P ) .<_ ( P .\/ ( F ` P ) ) ) -> ( F ` P ) e. A ) |
16 |
1 2 3
|
hlatlej1 |
|- ( ( K e. HL /\ P e. A /\ ( F ` P ) e. A ) -> P .<_ ( P .\/ ( F ` P ) ) ) |
17 |
8 10 15 16
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) /\ ( G ` P ) .<_ ( P .\/ ( F ` P ) ) ) -> P .<_ ( P .\/ ( F ` P ) ) ) |
18 |
|
simpr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) /\ ( G ` P ) .<_ ( P .\/ ( F ` P ) ) ) -> ( G ` P ) .<_ ( P .\/ ( F ` P ) ) ) |
19 |
8
|
hllatd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) /\ ( G ` P ) .<_ ( P .\/ ( F ` P ) ) ) -> K e. Lat ) |
20 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
21 |
20 3
|
atbase |
|- ( P e. A -> P e. ( Base ` K ) ) |
22 |
10 21
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) /\ ( G ` P ) .<_ ( P .\/ ( F ` P ) ) ) -> P e. ( Base ` K ) ) |
23 |
|
simp2r |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) -> G e. T ) |
24 |
1 3 4 5
|
ltrnat |
|- ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ P e. A ) -> ( G ` P ) e. A ) |
25 |
11 23 9 24
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( G ` P ) e. A ) |
26 |
25
|
adantr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) /\ ( G ` P ) .<_ ( P .\/ ( F ` P ) ) ) -> ( G ` P ) e. A ) |
27 |
20 3
|
atbase |
|- ( ( G ` P ) e. A -> ( G ` P ) e. ( Base ` K ) ) |
28 |
26 27
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) /\ ( G ` P ) .<_ ( P .\/ ( F ` P ) ) ) -> ( G ` P ) e. ( Base ` K ) ) |
29 |
20 2 3
|
hlatjcl |
|- ( ( K e. HL /\ P e. A /\ ( F ` P ) e. A ) -> ( P .\/ ( F ` P ) ) e. ( Base ` K ) ) |
30 |
8 10 15 29
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) /\ ( G ` P ) .<_ ( P .\/ ( F ` P ) ) ) -> ( P .\/ ( F ` P ) ) e. ( Base ` K ) ) |
31 |
20 1 2
|
latjle12 |
|- ( ( K e. Lat /\ ( P e. ( Base ` K ) /\ ( G ` P ) e. ( Base ` K ) /\ ( P .\/ ( F ` P ) ) e. ( Base ` K ) ) ) -> ( ( P .<_ ( P .\/ ( F ` P ) ) /\ ( G ` P ) .<_ ( P .\/ ( F ` P ) ) ) <-> ( P .\/ ( G ` P ) ) .<_ ( P .\/ ( F ` P ) ) ) ) |
32 |
19 22 28 30 31
|
syl13anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) /\ ( G ` P ) .<_ ( P .\/ ( F ` P ) ) ) -> ( ( P .<_ ( P .\/ ( F ` P ) ) /\ ( G ` P ) .<_ ( P .\/ ( F ` P ) ) ) <-> ( P .\/ ( G ` P ) ) .<_ ( P .\/ ( F ` P ) ) ) ) |
33 |
17 18 32
|
mpbi2and |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) /\ ( G ` P ) .<_ ( P .\/ ( F ` P ) ) ) -> ( P .\/ ( G ` P ) ) .<_ ( P .\/ ( F ` P ) ) ) |
34 |
|
simpl32 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) /\ ( G ` P ) .<_ ( P .\/ ( F ` P ) ) ) -> ( G ` P ) =/= P ) |
35 |
34
|
necomd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) /\ ( G ` P ) .<_ ( P .\/ ( F ` P ) ) ) -> P =/= ( G ` P ) ) |
36 |
1 2 3
|
ps-1 |
|- ( ( K e. HL /\ ( P e. A /\ ( G ` P ) e. A /\ P =/= ( G ` P ) ) /\ ( P e. A /\ ( F ` P ) e. A ) ) -> ( ( P .\/ ( G ` P ) ) .<_ ( P .\/ ( F ` P ) ) <-> ( P .\/ ( G ` P ) ) = ( P .\/ ( F ` P ) ) ) ) |
37 |
8 10 26 35 10 15 36
|
syl132anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) /\ ( G ` P ) .<_ ( P .\/ ( F ` P ) ) ) -> ( ( P .\/ ( G ` P ) ) .<_ ( P .\/ ( F ` P ) ) <-> ( P .\/ ( G ` P ) ) = ( P .\/ ( F ` P ) ) ) ) |
38 |
33 37
|
mpbid |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) /\ ( G ` P ) .<_ ( P .\/ ( F ` P ) ) ) -> ( P .\/ ( G ` P ) ) = ( P .\/ ( F ` P ) ) ) |
39 |
38
|
oveq1d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) /\ ( G ` P ) .<_ ( P .\/ ( F ` P ) ) ) -> ( ( P .\/ ( G ` P ) ) ( meet ` K ) W ) = ( ( P .\/ ( F ` P ) ) ( meet ` K ) W ) ) |
40 |
|
simpl1 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) /\ ( G ` P ) .<_ ( P .\/ ( F ` P ) ) ) -> ( K e. HL /\ W e. H ) ) |
41 |
|
simpl2r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) /\ ( G ` P ) .<_ ( P .\/ ( F ` P ) ) ) -> G e. T ) |
42 |
|
simpl31 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) /\ ( G ` P ) .<_ ( P .\/ ( F ` P ) ) ) -> ( P e. A /\ -. P .<_ W ) ) |
43 |
|
eqid |
|- ( meet ` K ) = ( meet ` K ) |
44 |
1 2 43 3 4 5 6
|
trlval2 |
|- ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( R ` G ) = ( ( P .\/ ( G ` P ) ) ( meet ` K ) W ) ) |
45 |
40 41 42 44
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) /\ ( G ` P ) .<_ ( P .\/ ( F ` P ) ) ) -> ( R ` G ) = ( ( P .\/ ( G ` P ) ) ( meet ` K ) W ) ) |
46 |
|
simpl2l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) /\ ( G ` P ) .<_ ( P .\/ ( F ` P ) ) ) -> F e. T ) |
47 |
1 2 43 3 4 5 6
|
trlval2 |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( R ` F ) = ( ( P .\/ ( F ` P ) ) ( meet ` K ) W ) ) |
48 |
40 46 42 47
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) /\ ( G ` P ) .<_ ( P .\/ ( F ` P ) ) ) -> ( R ` F ) = ( ( P .\/ ( F ` P ) ) ( meet ` K ) W ) ) |
49 |
39 45 48
|
3eqtr4rd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) /\ ( G ` P ) .<_ ( P .\/ ( F ` P ) ) ) -> ( R ` F ) = ( R ` G ) ) |
50 |
49
|
ex |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( ( G ` P ) .<_ ( P .\/ ( F ` P ) ) -> ( R ` F ) = ( R ` G ) ) ) |
51 |
50
|
necon3ad |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( ( R ` F ) =/= ( R ` G ) -> -. ( G ` P ) .<_ ( P .\/ ( F ` P ) ) ) ) |
52 |
7 51
|
mpd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) -> -. ( G ` P ) .<_ ( P .\/ ( F ` P ) ) ) |