| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdlemg42.l |
|- .<_ = ( le ` K ) |
| 2 |
|
cdlemg42.j |
|- .\/ = ( join ` K ) |
| 3 |
|
cdlemg42.a |
|- A = ( Atoms ` K ) |
| 4 |
|
cdlemg42.h |
|- H = ( LHyp ` K ) |
| 5 |
|
cdlemg42.t |
|- T = ( ( LTrn ` K ) ` W ) |
| 6 |
|
cdlemg42.r |
|- R = ( ( trL ` K ) ` W ) |
| 7 |
|
cdlemg42.m |
|- ./\ = ( meet ` K ) |
| 8 |
|
simp1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( K e. HL /\ W e. H ) ) |
| 9 |
|
simp2l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) -> F e. T ) |
| 10 |
|
simp31 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( P e. A /\ -. P .<_ W ) ) |
| 11 |
|
simp2r |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) -> G e. T ) |
| 12 |
1 3 4 5
|
ltrnel |
|- ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( G ` P ) e. A /\ -. ( G ` P ) .<_ W ) ) |
| 13 |
8 11 10 12
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( ( G ` P ) e. A /\ -. ( G ` P ) .<_ W ) ) |
| 14 |
1 2 3 4 5 6
|
cdlemg42 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) -> -. ( G ` P ) .<_ ( P .\/ ( F ` P ) ) ) |
| 15 |
1 2 7 3 4 5 6
|
cdlemc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( ( G ` P ) e. A /\ -. ( G ` P ) .<_ W ) ) /\ -. ( G ` P ) .<_ ( P .\/ ( F ` P ) ) ) -> ( F ` ( G ` P ) ) = ( ( ( G ` P ) .\/ ( R ` F ) ) ./\ ( ( F ` P ) .\/ ( ( P .\/ ( G ` P ) ) ./\ W ) ) ) ) |
| 16 |
8 9 10 13 14 15
|
syl131anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( F ` ( G ` P ) ) = ( ( ( G ` P ) .\/ ( R ` F ) ) ./\ ( ( F ` P ) .\/ ( ( P .\/ ( G ` P ) ) ./\ W ) ) ) ) |
| 17 |
1 2 7 3 4 5 6
|
trlval2 |
|- ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( R ` G ) = ( ( P .\/ ( G ` P ) ) ./\ W ) ) |
| 18 |
8 11 10 17
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( R ` G ) = ( ( P .\/ ( G ` P ) ) ./\ W ) ) |
| 19 |
18
|
oveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( ( F ` P ) .\/ ( R ` G ) ) = ( ( F ` P ) .\/ ( ( P .\/ ( G ` P ) ) ./\ W ) ) ) |
| 20 |
19
|
oveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( ( ( G ` P ) .\/ ( R ` F ) ) ./\ ( ( F ` P ) .\/ ( R ` G ) ) ) = ( ( ( G ` P ) .\/ ( R ` F ) ) ./\ ( ( F ` P ) .\/ ( ( P .\/ ( G ` P ) ) ./\ W ) ) ) ) |
| 21 |
16 20
|
eqtr4d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( F ` ( G ` P ) ) = ( ( ( G ` P ) .\/ ( R ` F ) ) ./\ ( ( F ` P ) .\/ ( R ` G ) ) ) ) |