Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg44.h |
|- H = ( LHyp ` K ) |
2 |
|
cdlemg44.t |
|- T = ( ( LTrn ` K ) ` W ) |
3 |
|
cdlemg44.r |
|- R = ( ( trL ` K ) ` W ) |
4 |
|
cdlemg44.l |
|- .<_ = ( le ` K ) |
5 |
|
cdlemg44.a |
|- A = ( Atoms ` K ) |
6 |
|
simp1l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) -> K e. HL ) |
7 |
6
|
hllatd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) -> K e. Lat ) |
8 |
|
simp1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( K e. HL /\ W e. H ) ) |
9 |
|
simp22 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) -> G e. T ) |
10 |
|
simp23l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) -> P e. A ) |
11 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
12 |
11 5
|
atbase |
|- ( P e. A -> P e. ( Base ` K ) ) |
13 |
10 12
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) -> P e. ( Base ` K ) ) |
14 |
11 1 2
|
ltrncl |
|- ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ P e. ( Base ` K ) ) -> ( G ` P ) e. ( Base ` K ) ) |
15 |
8 9 13 14
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( G ` P ) e. ( Base ` K ) ) |
16 |
|
simp21 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) -> F e. T ) |
17 |
11 1 2 3
|
trlcl |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> ( R ` F ) e. ( Base ` K ) ) |
18 |
8 16 17
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( R ` F ) e. ( Base ` K ) ) |
19 |
|
eqid |
|- ( join ` K ) = ( join ` K ) |
20 |
11 19
|
latjcl |
|- ( ( K e. Lat /\ ( G ` P ) e. ( Base ` K ) /\ ( R ` F ) e. ( Base ` K ) ) -> ( ( G ` P ) ( join ` K ) ( R ` F ) ) e. ( Base ` K ) ) |
21 |
7 15 18 20
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( ( G ` P ) ( join ` K ) ( R ` F ) ) e. ( Base ` K ) ) |
22 |
11 1 2
|
ltrncl |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ P e. ( Base ` K ) ) -> ( F ` P ) e. ( Base ` K ) ) |
23 |
8 16 13 22
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( F ` P ) e. ( Base ` K ) ) |
24 |
11 1 2 3
|
trlcl |
|- ( ( ( K e. HL /\ W e. H ) /\ G e. T ) -> ( R ` G ) e. ( Base ` K ) ) |
25 |
8 9 24
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( R ` G ) e. ( Base ` K ) ) |
26 |
11 19
|
latjcl |
|- ( ( K e. Lat /\ ( F ` P ) e. ( Base ` K ) /\ ( R ` G ) e. ( Base ` K ) ) -> ( ( F ` P ) ( join ` K ) ( R ` G ) ) e. ( Base ` K ) ) |
27 |
7 23 25 26
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( ( F ` P ) ( join ` K ) ( R ` G ) ) e. ( Base ` K ) ) |
28 |
|
eqid |
|- ( meet ` K ) = ( meet ` K ) |
29 |
11 28
|
latmcom |
|- ( ( K e. Lat /\ ( ( G ` P ) ( join ` K ) ( R ` F ) ) e. ( Base ` K ) /\ ( ( F ` P ) ( join ` K ) ( R ` G ) ) e. ( Base ` K ) ) -> ( ( ( G ` P ) ( join ` K ) ( R ` F ) ) ( meet ` K ) ( ( F ` P ) ( join ` K ) ( R ` G ) ) ) = ( ( ( F ` P ) ( join ` K ) ( R ` G ) ) ( meet ` K ) ( ( G ` P ) ( join ` K ) ( R ` F ) ) ) ) |
30 |
7 21 27 29
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( ( ( G ` P ) ( join ` K ) ( R ` F ) ) ( meet ` K ) ( ( F ` P ) ( join ` K ) ( R ` G ) ) ) = ( ( ( F ` P ) ( join ` K ) ( R ` G ) ) ( meet ` K ) ( ( G ` P ) ( join ` K ) ( R ` F ) ) ) ) |
31 |
|
simp23 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( P e. A /\ -. P .<_ W ) ) |
32 |
|
simp32 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( G ` P ) =/= P ) |
33 |
|
simp33 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( R ` F ) =/= ( R ` G ) ) |
34 |
4 19 5 1 2 3 28
|
cdlemg43 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( F ` ( G ` P ) ) = ( ( ( G ` P ) ( join ` K ) ( R ` F ) ) ( meet ` K ) ( ( F ` P ) ( join ` K ) ( R ` G ) ) ) ) |
35 |
8 16 9 31 32 33 34
|
syl123anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( F ` ( G ` P ) ) = ( ( ( G ` P ) ( join ` K ) ( R ` F ) ) ( meet ` K ) ( ( F ` P ) ( join ` K ) ( R ` G ) ) ) ) |
36 |
|
simp31 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( F ` P ) =/= P ) |
37 |
33
|
necomd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( R ` G ) =/= ( R ` F ) ) |
38 |
4 19 5 1 2 3 28
|
cdlemg43 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( G e. T /\ F e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( F ` P ) =/= P /\ ( R ` G ) =/= ( R ` F ) ) ) -> ( G ` ( F ` P ) ) = ( ( ( F ` P ) ( join ` K ) ( R ` G ) ) ( meet ` K ) ( ( G ` P ) ( join ` K ) ( R ` F ) ) ) ) |
39 |
8 9 16 31 36 37 38
|
syl123anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( G ` ( F ` P ) ) = ( ( ( F ` P ) ( join ` K ) ( R ` G ) ) ( meet ` K ) ( ( G ` P ) ( join ` K ) ( R ` F ) ) ) ) |
40 |
30 35 39
|
3eqtr4d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( F ` ( G ` P ) ) = ( G ` ( F ` P ) ) ) |