Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg44.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
cdlemg44.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
cdlemg44.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
cdlemg44.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
5 |
|
cdlemg44.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
6 |
|
simp1l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → 𝐾 ∈ HL ) |
7 |
6
|
hllatd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → 𝐾 ∈ Lat ) |
8 |
|
simp1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
9 |
|
simp22 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → 𝐺 ∈ 𝑇 ) |
10 |
|
simp23l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → 𝑃 ∈ 𝐴 ) |
11 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
12 |
11 5
|
atbase |
⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
13 |
10 12
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
14 |
11 1 2
|
ltrncl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ) → ( 𝐺 ‘ 𝑃 ) ∈ ( Base ‘ 𝐾 ) ) |
15 |
8 9 13 14
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → ( 𝐺 ‘ 𝑃 ) ∈ ( Base ‘ 𝐾 ) ) |
16 |
|
simp21 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → 𝐹 ∈ 𝑇 ) |
17 |
11 1 2 3
|
trlcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ( 𝑅 ‘ 𝐹 ) ∈ ( Base ‘ 𝐾 ) ) |
18 |
8 16 17
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → ( 𝑅 ‘ 𝐹 ) ∈ ( Base ‘ 𝐾 ) ) |
19 |
|
eqid |
⊢ ( join ‘ 𝐾 ) = ( join ‘ 𝐾 ) |
20 |
11 19
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝐺 ‘ 𝑃 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑅 ‘ 𝐹 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝐺 ‘ 𝑃 ) ( join ‘ 𝐾 ) ( 𝑅 ‘ 𝐹 ) ) ∈ ( Base ‘ 𝐾 ) ) |
21 |
7 15 18 20
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → ( ( 𝐺 ‘ 𝑃 ) ( join ‘ 𝐾 ) ( 𝑅 ‘ 𝐹 ) ) ∈ ( Base ‘ 𝐾 ) ) |
22 |
11 1 2
|
ltrncl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ) → ( 𝐹 ‘ 𝑃 ) ∈ ( Base ‘ 𝐾 ) ) |
23 |
8 16 13 22
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → ( 𝐹 ‘ 𝑃 ) ∈ ( Base ‘ 𝐾 ) ) |
24 |
11 1 2 3
|
trlcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐺 ∈ 𝑇 ) → ( 𝑅 ‘ 𝐺 ) ∈ ( Base ‘ 𝐾 ) ) |
25 |
8 9 24
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → ( 𝑅 ‘ 𝐺 ) ∈ ( Base ‘ 𝐾 ) ) |
26 |
11 19
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝐹 ‘ 𝑃 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑅 ‘ 𝐺 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝐹 ‘ 𝑃 ) ( join ‘ 𝐾 ) ( 𝑅 ‘ 𝐺 ) ) ∈ ( Base ‘ 𝐾 ) ) |
27 |
7 23 25 26
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → ( ( 𝐹 ‘ 𝑃 ) ( join ‘ 𝐾 ) ( 𝑅 ‘ 𝐺 ) ) ∈ ( Base ‘ 𝐾 ) ) |
28 |
|
eqid |
⊢ ( meet ‘ 𝐾 ) = ( meet ‘ 𝐾 ) |
29 |
11 28
|
latmcom |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( 𝐺 ‘ 𝑃 ) ( join ‘ 𝐾 ) ( 𝑅 ‘ 𝐹 ) ) ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ( join ‘ 𝐾 ) ( 𝑅 ‘ 𝐺 ) ) ∈ ( Base ‘ 𝐾 ) ) → ( ( ( 𝐺 ‘ 𝑃 ) ( join ‘ 𝐾 ) ( 𝑅 ‘ 𝐹 ) ) ( meet ‘ 𝐾 ) ( ( 𝐹 ‘ 𝑃 ) ( join ‘ 𝐾 ) ( 𝑅 ‘ 𝐺 ) ) ) = ( ( ( 𝐹 ‘ 𝑃 ) ( join ‘ 𝐾 ) ( 𝑅 ‘ 𝐺 ) ) ( meet ‘ 𝐾 ) ( ( 𝐺 ‘ 𝑃 ) ( join ‘ 𝐾 ) ( 𝑅 ‘ 𝐹 ) ) ) ) |
30 |
7 21 27 29
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → ( ( ( 𝐺 ‘ 𝑃 ) ( join ‘ 𝐾 ) ( 𝑅 ‘ 𝐹 ) ) ( meet ‘ 𝐾 ) ( ( 𝐹 ‘ 𝑃 ) ( join ‘ 𝐾 ) ( 𝑅 ‘ 𝐺 ) ) ) = ( ( ( 𝐹 ‘ 𝑃 ) ( join ‘ 𝐾 ) ( 𝑅 ‘ 𝐺 ) ) ( meet ‘ 𝐾 ) ( ( 𝐺 ‘ 𝑃 ) ( join ‘ 𝐾 ) ( 𝑅 ‘ 𝐹 ) ) ) ) |
31 |
|
simp23 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
32 |
|
simp32 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ) |
33 |
|
simp33 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) |
34 |
4 19 5 1 2 3 28
|
cdlemg43 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = ( ( ( 𝐺 ‘ 𝑃 ) ( join ‘ 𝐾 ) ( 𝑅 ‘ 𝐹 ) ) ( meet ‘ 𝐾 ) ( ( 𝐹 ‘ 𝑃 ) ( join ‘ 𝐾 ) ( 𝑅 ‘ 𝐺 ) ) ) ) |
35 |
8 16 9 31 32 33 34
|
syl123anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = ( ( ( 𝐺 ‘ 𝑃 ) ( join ‘ 𝐾 ) ( 𝑅 ‘ 𝐹 ) ) ( meet ‘ 𝐾 ) ( ( 𝐹 ‘ 𝑃 ) ( join ‘ 𝐾 ) ( 𝑅 ‘ 𝐺 ) ) ) ) |
36 |
|
simp31 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) |
37 |
33
|
necomd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐹 ) ) |
38 |
4 19 5 1 2 3 28
|
cdlemg43 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐹 ∈ 𝑇 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐹 ) ) ) → ( 𝐺 ‘ ( 𝐹 ‘ 𝑃 ) ) = ( ( ( 𝐹 ‘ 𝑃 ) ( join ‘ 𝐾 ) ( 𝑅 ‘ 𝐺 ) ) ( meet ‘ 𝐾 ) ( ( 𝐺 ‘ 𝑃 ) ( join ‘ 𝐾 ) ( 𝑅 ‘ 𝐹 ) ) ) ) |
39 |
8 9 16 31 36 37 38
|
syl123anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → ( 𝐺 ‘ ( 𝐹 ‘ 𝑃 ) ) = ( ( ( 𝐹 ‘ 𝑃 ) ( join ‘ 𝐾 ) ( 𝑅 ‘ 𝐺 ) ) ( meet ‘ 𝐾 ) ( ( 𝐺 ‘ 𝑃 ) ( join ‘ 𝐾 ) ( 𝑅 ‘ 𝐹 ) ) ) ) |
40 |
30 35 39
|
3eqtr4d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = ( 𝐺 ‘ ( 𝐹 ‘ 𝑃 ) ) ) |