Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg42.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
cdlemg42.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
cdlemg42.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
4 |
|
cdlemg42.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
5 |
|
cdlemg42.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
cdlemg42.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
|
cdlemg42.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
8 |
|
simp1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
9 |
|
simp2l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → 𝐹 ∈ 𝑇 ) |
10 |
|
simp31 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
11 |
|
simp2r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → 𝐺 ∈ 𝑇 ) |
12 |
1 3 4 5
|
ltrnel |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐺 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( 𝐺 ‘ 𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐺 ‘ 𝑃 ) ≤ 𝑊 ) ) |
13 |
8 11 10 12
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → ( ( 𝐺 ‘ 𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐺 ‘ 𝑃 ) ≤ 𝑊 ) ) |
14 |
1 2 3 4 5 6
|
cdlemg42 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → ¬ ( 𝐺 ‘ 𝑃 ) ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ) |
15 |
1 2 7 3 4 5 6
|
cdlemc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( ( 𝐺 ‘ 𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐺 ‘ 𝑃 ) ≤ 𝑊 ) ) ∧ ¬ ( 𝐺 ‘ 𝑃 ) ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = ( ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝑅 ‘ 𝐹 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∧ 𝑊 ) ) ) ) |
16 |
8 9 10 13 14 15
|
syl131anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = ( ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝑅 ‘ 𝐹 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∧ 𝑊 ) ) ) ) |
17 |
1 2 7 3 4 5 6
|
trlval2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐺 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝑅 ‘ 𝐺 ) = ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∧ 𝑊 ) ) |
18 |
8 11 10 17
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → ( 𝑅 ‘ 𝐺 ) = ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∧ 𝑊 ) ) |
19 |
18
|
oveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝑅 ‘ 𝐺 ) ) = ( ( 𝐹 ‘ 𝑃 ) ∨ ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∧ 𝑊 ) ) ) |
20 |
19
|
oveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → ( ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝑅 ‘ 𝐹 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝑅 ‘ 𝐺 ) ) ) = ( ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝑅 ‘ 𝐹 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∧ 𝑊 ) ) ) ) |
21 |
16 20
|
eqtr4d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = ( ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝑅 ‘ 𝐹 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝑅 ‘ 𝐺 ) ) ) ) |