Metamath Proof Explorer


Theorem cdlemc

Description: Lemma C in Crawley p. 113. (Contributed by NM, 26-May-2012)

Ref Expression
Hypotheses cdlemc3.l = ( le ‘ 𝐾 )
cdlemc3.j = ( join ‘ 𝐾 )
cdlemc3.m = ( meet ‘ 𝐾 )
cdlemc3.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemc3.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemc3.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
cdlemc3.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
Assertion cdlemc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ¬ 𝑄 ( 𝑃 ( 𝐹𝑃 ) ) ) → ( 𝐹𝑄 ) = ( ( 𝑄 ( 𝑅𝐹 ) ) ( ( 𝐹𝑃 ) ( ( 𝑃 𝑄 ) 𝑊 ) ) ) )

Proof

Step Hyp Ref Expression
1 cdlemc3.l = ( le ‘ 𝐾 )
2 cdlemc3.j = ( join ‘ 𝐾 )
3 cdlemc3.m = ( meet ‘ 𝐾 )
4 cdlemc3.a 𝐴 = ( Atoms ‘ 𝐾 )
5 cdlemc3.h 𝐻 = ( LHyp ‘ 𝐾 )
6 cdlemc3.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
7 cdlemc3.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
8 simpl1 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ¬ 𝑄 ( 𝑃 ( 𝐹𝑃 ) ) ) ∧ ( 𝐹𝑃 ) = 𝑃 ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
9 simpl2 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ¬ 𝑄 ( 𝑃 ( 𝐹𝑃 ) ) ) ∧ ( 𝐹𝑃 ) = 𝑃 ) → ( 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) )
10 simpr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ¬ 𝑄 ( 𝑃 ( 𝐹𝑃 ) ) ) ∧ ( 𝐹𝑃 ) = 𝑃 ) → ( 𝐹𝑃 ) = 𝑃 )
11 1 2 3 4 5 6 7 cdlemc6 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑃 ) = 𝑃 ) → ( 𝐹𝑄 ) = ( ( 𝑄 ( 𝑅𝐹 ) ) ( ( 𝐹𝑃 ) ( ( 𝑃 𝑄 ) 𝑊 ) ) ) )
12 8 9 10 11 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ¬ 𝑄 ( 𝑃 ( 𝐹𝑃 ) ) ) ∧ ( 𝐹𝑃 ) = 𝑃 ) → ( 𝐹𝑄 ) = ( ( 𝑄 ( 𝑅𝐹 ) ) ( ( 𝐹𝑃 ) ( ( 𝑃 𝑄 ) 𝑊 ) ) ) )
13 simpl1 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ¬ 𝑄 ( 𝑃 ( 𝐹𝑃 ) ) ) ∧ ( 𝐹𝑃 ) ≠ 𝑃 ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
14 simpl2 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ¬ 𝑄 ( 𝑃 ( 𝐹𝑃 ) ) ) ∧ ( 𝐹𝑃 ) ≠ 𝑃 ) → ( 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) )
15 simpl3 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ¬ 𝑄 ( 𝑃 ( 𝐹𝑃 ) ) ) ∧ ( 𝐹𝑃 ) ≠ 𝑃 ) → ¬ 𝑄 ( 𝑃 ( 𝐹𝑃 ) ) )
16 simpr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ¬ 𝑄 ( 𝑃 ( 𝐹𝑃 ) ) ) ∧ ( 𝐹𝑃 ) ≠ 𝑃 ) → ( 𝐹𝑃 ) ≠ 𝑃 )
17 1 2 3 4 5 6 7 cdlemc5 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ¬ 𝑄 ( 𝑃 ( 𝐹𝑃 ) ) ∧ ( 𝐹𝑃 ) ≠ 𝑃 ) ) → ( 𝐹𝑄 ) = ( ( 𝑄 ( 𝑅𝐹 ) ) ( ( 𝐹𝑃 ) ( ( 𝑃 𝑄 ) 𝑊 ) ) ) )
18 13 14 15 16 17 syl112anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ¬ 𝑄 ( 𝑃 ( 𝐹𝑃 ) ) ) ∧ ( 𝐹𝑃 ) ≠ 𝑃 ) → ( 𝐹𝑄 ) = ( ( 𝑄 ( 𝑅𝐹 ) ) ( ( 𝐹𝑃 ) ( ( 𝑃 𝑄 ) 𝑊 ) ) ) )
19 12 18 pm2.61dane ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ¬ 𝑄 ( 𝑃 ( 𝐹𝑃 ) ) ) → ( 𝐹𝑄 ) = ( ( 𝑄 ( 𝑅𝐹 ) ) ( ( 𝐹𝑃 ) ( ( 𝑃 𝑄 ) 𝑊 ) ) ) )