Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemc3.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
cdlemc3.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
cdlemc3.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
4 |
|
cdlemc3.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
cdlemc3.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
6 |
|
cdlemc3.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
|
cdlemc3.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
simpl1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
9 |
|
simpl2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ) |
10 |
|
simpr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → ( 𝐹 ‘ 𝑃 ) = 𝑃 ) |
11 |
1 2 3 4 5 6 7
|
cdlemc6 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → ( 𝐹 ‘ 𝑄 ) = ( ( 𝑄 ∨ ( 𝑅 ‘ 𝐹 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) ) ) |
12 |
8 9 10 11
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → ( 𝐹 ‘ 𝑄 ) = ( ( 𝑄 ∨ ( 𝑅 ‘ 𝐹 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) ) ) |
13 |
|
simpl1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
14 |
|
simpl2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) → ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ) |
15 |
|
simpl3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) → ¬ 𝑄 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ) |
16 |
|
simpr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) → ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) |
17 |
1 2 3 4 5 6 7
|
cdlemc5 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ¬ 𝑄 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) ) → ( 𝐹 ‘ 𝑄 ) = ( ( 𝑄 ∨ ( 𝑅 ‘ 𝐹 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) ) ) |
18 |
13 14 15 16 17
|
syl112anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) → ( 𝐹 ‘ 𝑄 ) = ( ( 𝑄 ∨ ( 𝑅 ‘ 𝐹 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) ) ) |
19 |
12 18
|
pm2.61dane |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ) → ( 𝐹 ‘ 𝑄 ) = ( ( 𝑄 ∨ ( 𝑅 ‘ 𝐹 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) ) ) |