Metamath Proof Explorer


Theorem cdlemc6

Description: Lemma for cdlemc . (Contributed by NM, 26-May-2012)

Ref Expression
Hypotheses cdlemc3.l = ( le ‘ 𝐾 )
cdlemc3.j = ( join ‘ 𝐾 )
cdlemc3.m = ( meet ‘ 𝐾 )
cdlemc3.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemc3.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemc3.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
cdlemc3.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
Assertion cdlemc6 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑃 ) = 𝑃 ) → ( 𝐹𝑄 ) = ( ( 𝑄 ( 𝑅𝐹 ) ) ( ( 𝐹𝑃 ) ( ( 𝑃 𝑄 ) 𝑊 ) ) ) )

Proof

Step Hyp Ref Expression
1 cdlemc3.l = ( le ‘ 𝐾 )
2 cdlemc3.j = ( join ‘ 𝐾 )
3 cdlemc3.m = ( meet ‘ 𝐾 )
4 cdlemc3.a 𝐴 = ( Atoms ‘ 𝐾 )
5 cdlemc3.h 𝐻 = ( LHyp ‘ 𝐾 )
6 cdlemc3.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
7 cdlemc3.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
8 simp1l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑃 ) = 𝑃 ) → 𝐾 ∈ HL )
9 simp22l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑃 ) = 𝑃 ) → 𝑃𝐴 )
10 simp23l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑃 ) = 𝑃 ) → 𝑄𝐴 )
11 2 4 hlatjcom ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) → ( 𝑃 𝑄 ) = ( 𝑄 𝑃 ) )
12 8 9 10 11 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑃 ) = 𝑃 ) → ( 𝑃 𝑄 ) = ( 𝑄 𝑃 ) )
13 12 oveq2d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑃 ) = 𝑃 ) → ( 𝑄 ( 𝑃 𝑄 ) ) = ( 𝑄 ( 𝑄 𝑃 ) ) )
14 8 hllatd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑃 ) = 𝑃 ) → 𝐾 ∈ Lat )
15 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
16 15 4 atbase ( 𝑄𝐴𝑄 ∈ ( Base ‘ 𝐾 ) )
17 10 16 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑃 ) = 𝑃 ) → 𝑄 ∈ ( Base ‘ 𝐾 ) )
18 15 4 atbase ( 𝑃𝐴𝑃 ∈ ( Base ‘ 𝐾 ) )
19 9 18 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑃 ) = 𝑃 ) → 𝑃 ∈ ( Base ‘ 𝐾 ) )
20 15 2 3 latabs2 ( ( 𝐾 ∈ Lat ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑄 ( 𝑄 𝑃 ) ) = 𝑄 )
21 14 17 19 20 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑃 ) = 𝑃 ) → ( 𝑄 ( 𝑄 𝑃 ) ) = 𝑄 )
22 13 21 eqtrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑃 ) = 𝑃 ) → ( 𝑄 ( 𝑃 𝑄 ) ) = 𝑄 )
23 simp1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑃 ) = 𝑃 ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
24 simp22 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑃 ) = 𝑃 ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
25 simp21 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑃 ) = 𝑃 ) → 𝐹𝑇 )
26 simp3 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑃 ) = 𝑃 ) → ( 𝐹𝑃 ) = 𝑃 )
27 eqid ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 )
28 1 27 4 5 6 7 trl0 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝐹𝑇 ∧ ( 𝐹𝑃 ) = 𝑃 ) ) → ( 𝑅𝐹 ) = ( 0. ‘ 𝐾 ) )
29 23 24 25 26 28 syl112anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑃 ) = 𝑃 ) → ( 𝑅𝐹 ) = ( 0. ‘ 𝐾 ) )
30 29 oveq2d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑃 ) = 𝑃 ) → ( 𝑄 ( 𝑅𝐹 ) ) = ( 𝑄 ( 0. ‘ 𝐾 ) ) )
31 hlol ( 𝐾 ∈ HL → 𝐾 ∈ OL )
32 8 31 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑃 ) = 𝑃 ) → 𝐾 ∈ OL )
33 15 2 27 olj01 ( ( 𝐾 ∈ OL ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑄 ( 0. ‘ 𝐾 ) ) = 𝑄 )
34 32 17 33 syl2anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑃 ) = 𝑃 ) → ( 𝑄 ( 0. ‘ 𝐾 ) ) = 𝑄 )
35 30 34 eqtrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑃 ) = 𝑃 ) → ( 𝑄 ( 𝑅𝐹 ) ) = 𝑄 )
36 26 oveq1d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑃 ) = 𝑃 ) → ( ( 𝐹𝑃 ) ( ( 𝑃 𝑄 ) 𝑊 ) ) = ( 𝑃 ( ( 𝑃 𝑄 ) 𝑊 ) ) )
37 15 2 4 hlatjcl ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) → ( 𝑃 𝑄 ) ∈ ( Base ‘ 𝐾 ) )
38 8 9 10 37 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑃 ) = 𝑃 ) → ( 𝑃 𝑄 ) ∈ ( Base ‘ 𝐾 ) )
39 simp1r ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑃 ) = 𝑃 ) → 𝑊𝐻 )
40 15 5 lhpbase ( 𝑊𝐻𝑊 ∈ ( Base ‘ 𝐾 ) )
41 39 40 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑃 ) = 𝑃 ) → 𝑊 ∈ ( Base ‘ 𝐾 ) )
42 15 3 latmcl ( ( 𝐾 ∈ Lat ∧ ( 𝑃 𝑄 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 𝑄 ) 𝑊 ) ∈ ( Base ‘ 𝐾 ) )
43 14 38 41 42 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑃 ) = 𝑃 ) → ( ( 𝑃 𝑄 ) 𝑊 ) ∈ ( Base ‘ 𝐾 ) )
44 15 2 latjcom ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝑃 𝑄 ) 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝑃 ( ( 𝑃 𝑄 ) 𝑊 ) ) = ( ( ( 𝑃 𝑄 ) 𝑊 ) 𝑃 ) )
45 14 19 43 44 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑃 ) = 𝑃 ) → ( 𝑃 ( ( 𝑃 𝑄 ) 𝑊 ) ) = ( ( ( 𝑃 𝑄 ) 𝑊 ) 𝑃 ) )
46 1 2 4 hlatlej1 ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) → 𝑃 ( 𝑃 𝑄 ) )
47 8 9 10 46 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑃 ) = 𝑃 ) → 𝑃 ( 𝑃 𝑄 ) )
48 15 1 2 3 4 atmod2i1 ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴 ∧ ( 𝑃 𝑄 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑃 ( 𝑃 𝑄 ) ) → ( ( ( 𝑃 𝑄 ) 𝑊 ) 𝑃 ) = ( ( 𝑃 𝑄 ) ( 𝑊 𝑃 ) ) )
49 8 9 38 41 47 48 syl131anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑃 ) = 𝑃 ) → ( ( ( 𝑃 𝑄 ) 𝑊 ) 𝑃 ) = ( ( 𝑃 𝑄 ) ( 𝑊 𝑃 ) ) )
50 eqid ( 1. ‘ 𝐾 ) = ( 1. ‘ 𝐾 )
51 1 2 50 4 5 lhpjat1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( 𝑊 𝑃 ) = ( 1. ‘ 𝐾 ) )
52 8 39 24 51 syl21anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑃 ) = 𝑃 ) → ( 𝑊 𝑃 ) = ( 1. ‘ 𝐾 ) )
53 52 oveq2d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑃 ) = 𝑃 ) → ( ( 𝑃 𝑄 ) ( 𝑊 𝑃 ) ) = ( ( 𝑃 𝑄 ) ( 1. ‘ 𝐾 ) ) )
54 15 3 50 olm11 ( ( 𝐾 ∈ OL ∧ ( 𝑃 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 𝑄 ) ( 1. ‘ 𝐾 ) ) = ( 𝑃 𝑄 ) )
55 32 38 54 syl2anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑃 ) = 𝑃 ) → ( ( 𝑃 𝑄 ) ( 1. ‘ 𝐾 ) ) = ( 𝑃 𝑄 ) )
56 49 53 55 3eqtrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑃 ) = 𝑃 ) → ( ( ( 𝑃 𝑄 ) 𝑊 ) 𝑃 ) = ( 𝑃 𝑄 ) )
57 36 45 56 3eqtrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑃 ) = 𝑃 ) → ( ( 𝐹𝑃 ) ( ( 𝑃 𝑄 ) 𝑊 ) ) = ( 𝑃 𝑄 ) )
58 35 57 oveq12d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑃 ) = 𝑃 ) → ( ( 𝑄 ( 𝑅𝐹 ) ) ( ( 𝐹𝑃 ) ( ( 𝑃 𝑄 ) 𝑊 ) ) ) = ( 𝑄 ( 𝑃 𝑄 ) ) )
59 1 4 5 6 ltrnateq ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑃 ) = 𝑃 ) → ( 𝐹𝑄 ) = 𝑄 )
60 22 58 59 3eqtr4rd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑃 ) = 𝑃 ) → ( 𝐹𝑄 ) = ( ( 𝑄 ( 𝑅𝐹 ) ) ( ( 𝐹𝑃 ) ( ( 𝑃 𝑄 ) 𝑊 ) ) ) )