| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdlemc3.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
						
							| 2 |  | cdlemc3.j | ⊢  ∨   =  ( join ‘ 𝐾 ) | 
						
							| 3 |  | cdlemc3.m | ⊢  ∧   =  ( meet ‘ 𝐾 ) | 
						
							| 4 |  | cdlemc3.a | ⊢ 𝐴  =  ( Atoms ‘ 𝐾 ) | 
						
							| 5 |  | cdlemc3.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 6 |  | cdlemc3.t | ⊢ 𝑇  =  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 7 |  | cdlemc3.r | ⊢ 𝑅  =  ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 8 |  | simp1l | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  𝐾  ∈  HL ) | 
						
							| 9 |  | simp22l | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  𝑃  ∈  𝐴 ) | 
						
							| 10 |  | simp23l | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  𝑄  ∈  𝐴 ) | 
						
							| 11 | 2 4 | hlatjcom | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  →  ( 𝑃  ∨  𝑄 )  =  ( 𝑄  ∨  𝑃 ) ) | 
						
							| 12 | 8 9 10 11 | syl3anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  ( 𝑃  ∨  𝑄 )  =  ( 𝑄  ∨  𝑃 ) ) | 
						
							| 13 | 12 | oveq2d | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  ( 𝑄  ∧  ( 𝑃  ∨  𝑄 ) )  =  ( 𝑄  ∧  ( 𝑄  ∨  𝑃 ) ) ) | 
						
							| 14 | 8 | hllatd | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  𝐾  ∈  Lat ) | 
						
							| 15 |  | eqid | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 ) | 
						
							| 16 | 15 4 | atbase | ⊢ ( 𝑄  ∈  𝐴  →  𝑄  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 17 | 10 16 | syl | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  𝑄  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 18 | 15 4 | atbase | ⊢ ( 𝑃  ∈  𝐴  →  𝑃  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 19 | 9 18 | syl | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  𝑃  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 20 | 15 2 3 | latabs2 | ⊢ ( ( 𝐾  ∈  Lat  ∧  𝑄  ∈  ( Base ‘ 𝐾 )  ∧  𝑃  ∈  ( Base ‘ 𝐾 ) )  →  ( 𝑄  ∧  ( 𝑄  ∨  𝑃 ) )  =  𝑄 ) | 
						
							| 21 | 14 17 19 20 | syl3anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  ( 𝑄  ∧  ( 𝑄  ∨  𝑃 ) )  =  𝑄 ) | 
						
							| 22 | 13 21 | eqtrd | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  ( 𝑄  ∧  ( 𝑃  ∨  𝑄 ) )  =  𝑄 ) | 
						
							| 23 |  | simp1 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 24 |  | simp22 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 ) ) | 
						
							| 25 |  | simp21 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  𝐹  ∈  𝑇 ) | 
						
							| 26 |  | simp3 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  ( 𝐹 ‘ 𝑃 )  =  𝑃 ) | 
						
							| 27 |  | eqid | ⊢ ( 0. ‘ 𝐾 )  =  ( 0. ‘ 𝐾 ) | 
						
							| 28 | 1 27 4 5 6 7 | trl0 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 ) )  →  ( 𝑅 ‘ 𝐹 )  =  ( 0. ‘ 𝐾 ) ) | 
						
							| 29 | 23 24 25 26 28 | syl112anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  ( 𝑅 ‘ 𝐹 )  =  ( 0. ‘ 𝐾 ) ) | 
						
							| 30 | 29 | oveq2d | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  ( 𝑄  ∨  ( 𝑅 ‘ 𝐹 ) )  =  ( 𝑄  ∨  ( 0. ‘ 𝐾 ) ) ) | 
						
							| 31 |  | hlol | ⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  OL ) | 
						
							| 32 | 8 31 | syl | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  𝐾  ∈  OL ) | 
						
							| 33 | 15 2 27 | olj01 | ⊢ ( ( 𝐾  ∈  OL  ∧  𝑄  ∈  ( Base ‘ 𝐾 ) )  →  ( 𝑄  ∨  ( 0. ‘ 𝐾 ) )  =  𝑄 ) | 
						
							| 34 | 32 17 33 | syl2anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  ( 𝑄  ∨  ( 0. ‘ 𝐾 ) )  =  𝑄 ) | 
						
							| 35 | 30 34 | eqtrd | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  ( 𝑄  ∨  ( 𝑅 ‘ 𝐹 ) )  =  𝑄 ) | 
						
							| 36 | 26 | oveq1d | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  ( ( 𝐹 ‘ 𝑃 )  ∨  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) )  =  ( 𝑃  ∨  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) ) ) | 
						
							| 37 | 15 2 4 | hlatjcl | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  →  ( 𝑃  ∨  𝑄 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 38 | 8 9 10 37 | syl3anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  ( 𝑃  ∨  𝑄 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 39 |  | simp1r | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  𝑊  ∈  𝐻 ) | 
						
							| 40 | 15 5 | lhpbase | ⊢ ( 𝑊  ∈  𝐻  →  𝑊  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 41 | 39 40 | syl | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  𝑊  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 42 | 15 3 | latmcl | ⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑃  ∨  𝑄 )  ∈  ( Base ‘ 𝐾 )  ∧  𝑊  ∈  ( Base ‘ 𝐾 ) )  →  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 43 | 14 38 41 42 | syl3anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 44 | 15 2 | latjcom | ⊢ ( ( 𝐾  ∈  Lat  ∧  𝑃  ∈  ( Base ‘ 𝐾 )  ∧  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  ∈  ( Base ‘ 𝐾 ) )  →  ( 𝑃  ∨  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) )  =  ( ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  ∨  𝑃 ) ) | 
						
							| 45 | 14 19 43 44 | syl3anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  ( 𝑃  ∨  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) )  =  ( ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  ∨  𝑃 ) ) | 
						
							| 46 | 1 2 4 | hlatlej1 | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  →  𝑃  ≤  ( 𝑃  ∨  𝑄 ) ) | 
						
							| 47 | 8 9 10 46 | syl3anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  𝑃  ≤  ( 𝑃  ∨  𝑄 ) ) | 
						
							| 48 | 15 1 2 3 4 | atmod2i1 | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  ( 𝑃  ∨  𝑄 )  ∈  ( Base ‘ 𝐾 )  ∧  𝑊  ∈  ( Base ‘ 𝐾 ) )  ∧  𝑃  ≤  ( 𝑃  ∨  𝑄 ) )  →  ( ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  ∨  𝑃 )  =  ( ( 𝑃  ∨  𝑄 )  ∧  ( 𝑊  ∨  𝑃 ) ) ) | 
						
							| 49 | 8 9 38 41 47 48 | syl131anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  ( ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  ∨  𝑃 )  =  ( ( 𝑃  ∨  𝑄 )  ∧  ( 𝑊  ∨  𝑃 ) ) ) | 
						
							| 50 |  | eqid | ⊢ ( 1. ‘ 𝐾 )  =  ( 1. ‘ 𝐾 ) | 
						
							| 51 | 1 2 50 4 5 | lhpjat1 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 ) )  →  ( 𝑊  ∨  𝑃 )  =  ( 1. ‘ 𝐾 ) ) | 
						
							| 52 | 8 39 24 51 | syl21anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  ( 𝑊  ∨  𝑃 )  =  ( 1. ‘ 𝐾 ) ) | 
						
							| 53 | 52 | oveq2d | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  ( ( 𝑃  ∨  𝑄 )  ∧  ( 𝑊  ∨  𝑃 ) )  =  ( ( 𝑃  ∨  𝑄 )  ∧  ( 1. ‘ 𝐾 ) ) ) | 
						
							| 54 | 15 3 50 | olm11 | ⊢ ( ( 𝐾  ∈  OL  ∧  ( 𝑃  ∨  𝑄 )  ∈  ( Base ‘ 𝐾 ) )  →  ( ( 𝑃  ∨  𝑄 )  ∧  ( 1. ‘ 𝐾 ) )  =  ( 𝑃  ∨  𝑄 ) ) | 
						
							| 55 | 32 38 54 | syl2anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  ( ( 𝑃  ∨  𝑄 )  ∧  ( 1. ‘ 𝐾 ) )  =  ( 𝑃  ∨  𝑄 ) ) | 
						
							| 56 | 49 53 55 | 3eqtrd | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  ( ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  ∨  𝑃 )  =  ( 𝑃  ∨  𝑄 ) ) | 
						
							| 57 | 36 45 56 | 3eqtrd | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  ( ( 𝐹 ‘ 𝑃 )  ∨  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) )  =  ( 𝑃  ∨  𝑄 ) ) | 
						
							| 58 | 35 57 | oveq12d | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  ( ( 𝑄  ∨  ( 𝑅 ‘ 𝐹 ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∨  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) ) )  =  ( 𝑄  ∧  ( 𝑃  ∨  𝑄 ) ) ) | 
						
							| 59 | 1 4 5 6 | ltrnateq | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  ( 𝐹 ‘ 𝑄 )  =  𝑄 ) | 
						
							| 60 | 22 58 59 | 3eqtr4rd | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  ( 𝐹 ‘ 𝑄 )  =  ( ( 𝑄  ∨  ( 𝑅 ‘ 𝐹 ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∨  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) ) ) ) |