| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdlemc3.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 2 |
|
cdlemc3.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 3 |
|
cdlemc3.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
| 4 |
|
cdlemc3.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 5 |
|
cdlemc3.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 6 |
|
cdlemc3.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
| 7 |
|
cdlemc3.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
| 8 |
|
simp1l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ¬ 𝑄 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) ) → 𝐾 ∈ HL ) |
| 9 |
|
simp23l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ¬ 𝑄 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) ) → 𝑄 ∈ 𝐴 ) |
| 10 |
|
simp1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ¬ 𝑄 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 11 |
|
simp21 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ¬ 𝑄 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) ) → 𝐹 ∈ 𝑇 ) |
| 12 |
1 4 5 6
|
ltrnat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝑄 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑄 ) ∈ 𝐴 ) |
| 13 |
10 11 9 12
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ¬ 𝑄 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) ) → ( 𝐹 ‘ 𝑄 ) ∈ 𝐴 ) |
| 14 |
1 2 4
|
hlatlej2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑄 ) ∈ 𝐴 ) → ( 𝐹 ‘ 𝑄 ) ≤ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) |
| 15 |
8 9 13 14
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ¬ 𝑄 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) ) → ( 𝐹 ‘ 𝑄 ) ≤ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) |
| 16 |
|
simp23 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ¬ 𝑄 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) ) → ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) |
| 17 |
1 2 4 5 6 7
|
trljat1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( 𝑄 ∨ ( 𝑅 ‘ 𝐹 ) ) = ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) |
| 18 |
10 11 16 17
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ¬ 𝑄 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) ) → ( 𝑄 ∨ ( 𝑅 ‘ 𝐹 ) ) = ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) |
| 19 |
15 18
|
breqtrrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ¬ 𝑄 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) ) → ( 𝐹 ‘ 𝑄 ) ≤ ( 𝑄 ∨ ( 𝑅 ‘ 𝐹 ) ) ) |
| 20 |
|
simp22 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ¬ 𝑄 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
| 21 |
1 2 3 4 5 6
|
cdlemc2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ) → ( 𝐹 ‘ 𝑄 ) ≤ ( ( 𝐹 ‘ 𝑃 ) ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) ) |
| 22 |
10 11 20 16 21
|
syl112anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ¬ 𝑄 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) ) → ( 𝐹 ‘ 𝑄 ) ≤ ( ( 𝐹 ‘ 𝑃 ) ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) ) |
| 23 |
8
|
hllatd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ¬ 𝑄 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) ) → 𝐾 ∈ Lat ) |
| 24 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 25 |
24 4
|
atbase |
⊢ ( 𝑄 ∈ 𝐴 → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
| 26 |
9 25
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ¬ 𝑄 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) ) → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
| 27 |
24 5 6
|
ltrncl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ) → ( 𝐹 ‘ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) |
| 28 |
10 11 26 27
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ¬ 𝑄 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) ) → ( 𝐹 ‘ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) |
| 29 |
24 5 6 7
|
trlcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ( 𝑅 ‘ 𝐹 ) ∈ ( Base ‘ 𝐾 ) ) |
| 30 |
10 11 29
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ¬ 𝑄 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) ) → ( 𝑅 ‘ 𝐹 ) ∈ ( Base ‘ 𝐾 ) ) |
| 31 |
24 2
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑅 ‘ 𝐹 ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝑄 ∨ ( 𝑅 ‘ 𝐹 ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 32 |
23 26 30 31
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ¬ 𝑄 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) ) → ( 𝑄 ∨ ( 𝑅 ‘ 𝐹 ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 33 |
|
simp22l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ¬ 𝑄 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) ) → 𝑃 ∈ 𝐴 ) |
| 34 |
24 4
|
atbase |
⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
| 35 |
33 34
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ¬ 𝑄 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) ) → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
| 36 |
24 5 6
|
ltrncl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ) → ( 𝐹 ‘ 𝑃 ) ∈ ( Base ‘ 𝐾 ) ) |
| 37 |
10 11 35 36
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ¬ 𝑄 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) ) → ( 𝐹 ‘ 𝑃 ) ∈ ( Base ‘ 𝐾 ) ) |
| 38 |
24 2 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) |
| 39 |
8 33 9 38
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ¬ 𝑄 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) ) → ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) |
| 40 |
|
simp1r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ¬ 𝑄 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) ) → 𝑊 ∈ 𝐻 ) |
| 41 |
24 5
|
lhpbase |
⊢ ( 𝑊 ∈ 𝐻 → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
| 42 |
40 41
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ¬ 𝑄 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) ) → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
| 43 |
24 3
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) |
| 44 |
23 39 42 43
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ¬ 𝑄 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) |
| 45 |
24 2
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝐹 ‘ 𝑃 ) ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝐹 ‘ 𝑃 ) ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 46 |
23 37 44 45
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ¬ 𝑄 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) ) → ( ( 𝐹 ‘ 𝑃 ) ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 47 |
24 1 3
|
latlem12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑄 ∨ ( 𝑅 ‘ 𝐹 ) ) ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) ∈ ( Base ‘ 𝐾 ) ) ) → ( ( ( 𝐹 ‘ 𝑄 ) ≤ ( 𝑄 ∨ ( 𝑅 ‘ 𝐹 ) ) ∧ ( 𝐹 ‘ 𝑄 ) ≤ ( ( 𝐹 ‘ 𝑃 ) ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) ) ↔ ( 𝐹 ‘ 𝑄 ) ≤ ( ( 𝑄 ∨ ( 𝑅 ‘ 𝐹 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) ) ) ) |
| 48 |
23 28 32 46 47
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ¬ 𝑄 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) ) → ( ( ( 𝐹 ‘ 𝑄 ) ≤ ( 𝑄 ∨ ( 𝑅 ‘ 𝐹 ) ) ∧ ( 𝐹 ‘ 𝑄 ) ≤ ( ( 𝐹 ‘ 𝑃 ) ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) ) ↔ ( 𝐹 ‘ 𝑄 ) ≤ ( ( 𝑄 ∨ ( 𝑅 ‘ 𝐹 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) ) ) ) |
| 49 |
19 22 48
|
mpbi2and |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ¬ 𝑄 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) ) → ( 𝐹 ‘ 𝑄 ) ≤ ( ( 𝑄 ∨ ( 𝑅 ‘ 𝐹 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) ) ) |
| 50 |
|
hlatl |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ AtLat ) |
| 51 |
8 50
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ¬ 𝑄 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) ) → 𝐾 ∈ AtLat ) |
| 52 |
|
simp3r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ¬ 𝑄 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) ) → ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) |
| 53 |
1 4 5 6 7
|
trlat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) ) → ( 𝑅 ‘ 𝐹 ) ∈ 𝐴 ) |
| 54 |
10 20 11 52 53
|
syl112anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ¬ 𝑄 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) ) → ( 𝑅 ‘ 𝐹 ) ∈ 𝐴 ) |
| 55 |
1 5 6 7
|
trlle |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ( 𝑅 ‘ 𝐹 ) ≤ 𝑊 ) |
| 56 |
10 11 55
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ¬ 𝑄 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) ) → ( 𝑅 ‘ 𝐹 ) ≤ 𝑊 ) |
| 57 |
|
simp23r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ¬ 𝑄 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) ) → ¬ 𝑄 ≤ 𝑊 ) |
| 58 |
|
nbrne2 |
⊢ ( ( ( 𝑅 ‘ 𝐹 ) ≤ 𝑊 ∧ ¬ 𝑄 ≤ 𝑊 ) → ( 𝑅 ‘ 𝐹 ) ≠ 𝑄 ) |
| 59 |
58
|
necomd |
⊢ ( ( ( 𝑅 ‘ 𝐹 ) ≤ 𝑊 ∧ ¬ 𝑄 ≤ 𝑊 ) → 𝑄 ≠ ( 𝑅 ‘ 𝐹 ) ) |
| 60 |
56 57 59
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ¬ 𝑄 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) ) → 𝑄 ≠ ( 𝑅 ‘ 𝐹 ) ) |
| 61 |
|
eqid |
⊢ ( LLines ‘ 𝐾 ) = ( LLines ‘ 𝐾 ) |
| 62 |
2 4 61
|
llni2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ ( 𝑅 ‘ 𝐹 ) ∈ 𝐴 ) ∧ 𝑄 ≠ ( 𝑅 ‘ 𝐹 ) ) → ( 𝑄 ∨ ( 𝑅 ‘ 𝐹 ) ) ∈ ( LLines ‘ 𝐾 ) ) |
| 63 |
8 9 54 60 62
|
syl31anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ¬ 𝑄 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) ) → ( 𝑄 ∨ ( 𝑅 ‘ 𝐹 ) ) ∈ ( LLines ‘ 𝐾 ) ) |
| 64 |
1 4 5 6
|
ltrnat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ) |
| 65 |
10 11 33 64
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ¬ 𝑄 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) ) → ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ) |
| 66 |
1 2 4
|
hlatlej1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ) → 𝑃 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ) |
| 67 |
8 33 65 66
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ¬ 𝑄 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) ) → 𝑃 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ) |
| 68 |
|
simp3l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ¬ 𝑄 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) ) → ¬ 𝑄 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ) |
| 69 |
|
nbrne2 |
⊢ ( ( 𝑃 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ) → 𝑃 ≠ 𝑄 ) |
| 70 |
67 68 69
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ¬ 𝑄 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) ) → 𝑃 ≠ 𝑄 ) |
| 71 |
1 2 3 4 5
|
lhpat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ∈ 𝐴 ) |
| 72 |
10 20 9 70 71
|
syl112anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ¬ 𝑄 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ∈ 𝐴 ) |
| 73 |
24 1 3
|
latmle2 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ≤ 𝑊 ) |
| 74 |
23 39 42 73
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ¬ 𝑄 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ≤ 𝑊 ) |
| 75 |
1 4 5 6
|
ltrnel |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑃 ) ≤ 𝑊 ) ) |
| 76 |
75
|
simprd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ¬ ( 𝐹 ‘ 𝑃 ) ≤ 𝑊 ) |
| 77 |
10 11 20 76
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ¬ 𝑄 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) ) → ¬ ( 𝐹 ‘ 𝑃 ) ≤ 𝑊 ) |
| 78 |
|
nbrne2 |
⊢ ( ( ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ≤ 𝑊 ∧ ¬ ( 𝐹 ‘ 𝑃 ) ≤ 𝑊 ) → ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ≠ ( 𝐹 ‘ 𝑃 ) ) |
| 79 |
78
|
necomd |
⊢ ( ( ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ≤ 𝑊 ∧ ¬ ( 𝐹 ‘ 𝑃 ) ≤ 𝑊 ) → ( 𝐹 ‘ 𝑃 ) ≠ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) |
| 80 |
74 77 79
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ¬ 𝑄 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) ) → ( 𝐹 ‘ 𝑃 ) ≠ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) |
| 81 |
2 4 61
|
llni2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ∧ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) → ( ( 𝐹 ‘ 𝑃 ) ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) ∈ ( LLines ‘ 𝐾 ) ) |
| 82 |
8 65 72 80 81
|
syl31anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ¬ 𝑄 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) ) → ( ( 𝐹 ‘ 𝑃 ) ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) ∈ ( LLines ‘ 𝐾 ) ) |
| 83 |
1 2 3 4 5 6 7
|
cdlemc4 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ) → ( 𝑄 ∨ ( 𝑅 ‘ 𝐹 ) ) ≠ ( ( 𝐹 ‘ 𝑃 ) ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) ) |
| 84 |
83
|
3adant3r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ¬ 𝑄 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) ) → ( 𝑄 ∨ ( 𝑅 ‘ 𝐹 ) ) ≠ ( ( 𝐹 ‘ 𝑃 ) ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) ) |
| 85 |
24 3
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑄 ∨ ( 𝑅 ‘ 𝐹 ) ) ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑄 ∨ ( 𝑅 ‘ 𝐹 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 86 |
23 32 46 85
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ¬ 𝑄 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) ) → ( ( 𝑄 ∨ ( 𝑅 ‘ 𝐹 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 87 |
|
eqid |
⊢ ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 ) |
| 88 |
24 1 87 4
|
atlen0 |
⊢ ( ( ( 𝐾 ∈ AtLat ∧ ( ( 𝑄 ∨ ( 𝑅 ‘ 𝐹 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝐹 ‘ 𝑄 ) ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑄 ) ≤ ( ( 𝑄 ∨ ( 𝑅 ‘ 𝐹 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) ) ) → ( ( 𝑄 ∨ ( 𝑅 ‘ 𝐹 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) ) ≠ ( 0. ‘ 𝐾 ) ) |
| 89 |
51 86 13 49 88
|
syl31anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ¬ 𝑄 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) ) → ( ( 𝑄 ∨ ( 𝑅 ‘ 𝐹 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) ) ≠ ( 0. ‘ 𝐾 ) ) |
| 90 |
3 87 4 61
|
2llnmat |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑄 ∨ ( 𝑅 ‘ 𝐹 ) ) ∈ ( LLines ‘ 𝐾 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) ∈ ( LLines ‘ 𝐾 ) ) ∧ ( ( 𝑄 ∨ ( 𝑅 ‘ 𝐹 ) ) ≠ ( ( 𝐹 ‘ 𝑃 ) ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) ∧ ( ( 𝑄 ∨ ( 𝑅 ‘ 𝐹 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) ) ≠ ( 0. ‘ 𝐾 ) ) ) → ( ( 𝑄 ∨ ( 𝑅 ‘ 𝐹 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) ) ∈ 𝐴 ) |
| 91 |
8 63 82 84 89 90
|
syl32anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ¬ 𝑄 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) ) → ( ( 𝑄 ∨ ( 𝑅 ‘ 𝐹 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) ) ∈ 𝐴 ) |
| 92 |
1 4
|
atcmp |
⊢ ( ( 𝐾 ∈ AtLat ∧ ( 𝐹 ‘ 𝑄 ) ∈ 𝐴 ∧ ( ( 𝑄 ∨ ( 𝑅 ‘ 𝐹 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) ) ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑄 ) ≤ ( ( 𝑄 ∨ ( 𝑅 ‘ 𝐹 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) ) ↔ ( 𝐹 ‘ 𝑄 ) = ( ( 𝑄 ∨ ( 𝑅 ‘ 𝐹 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) ) ) ) |
| 93 |
51 13 91 92
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ¬ 𝑄 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) ) → ( ( 𝐹 ‘ 𝑄 ) ≤ ( ( 𝑄 ∨ ( 𝑅 ‘ 𝐹 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) ) ↔ ( 𝐹 ‘ 𝑄 ) = ( ( 𝑄 ∨ ( 𝑅 ‘ 𝐹 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) ) ) ) |
| 94 |
49 93
|
mpbid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ¬ 𝑄 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) ) → ( 𝐹 ‘ 𝑄 ) = ( ( 𝑄 ∨ ( 𝑅 ‘ 𝐹 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) ) ) |