Metamath Proof Explorer


Theorem cdlemc2

Description: Part of proof of Lemma C in Crawley p. 112. (Contributed by NM, 25-May-2012)

Ref Expression
Hypotheses cdlemc2.l = ( le ‘ 𝐾 )
cdlemc2.j = ( join ‘ 𝐾 )
cdlemc2.m = ( meet ‘ 𝐾 )
cdlemc2.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemc2.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemc2.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
Assertion cdlemc2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ) → ( 𝐹𝑄 ) ( ( 𝐹𝑃 ) ( ( 𝑃 𝑄 ) 𝑊 ) ) )

Proof

Step Hyp Ref Expression
1 cdlemc2.l = ( le ‘ 𝐾 )
2 cdlemc2.j = ( join ‘ 𝐾 )
3 cdlemc2.m = ( meet ‘ 𝐾 )
4 cdlemc2.a 𝐴 = ( Atoms ‘ 𝐾 )
5 cdlemc2.h 𝐻 = ( LHyp ‘ 𝐾 )
6 cdlemc2.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
7 simp1l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ) → 𝐾 ∈ HL )
8 simp3ll ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ) → 𝑃𝐴 )
9 simp3rl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ) → 𝑄𝐴 )
10 1 2 4 hlatlej2 ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) → 𝑄 ( 𝑃 𝑄 ) )
11 7 8 9 10 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ) → 𝑄 ( 𝑃 𝑄 ) )
12 simp1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
13 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
14 13 4 atbase ( 𝑄𝐴𝑄 ∈ ( Base ‘ 𝐾 ) )
15 9 14 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ) → 𝑄 ∈ ( Base ‘ 𝐾 ) )
16 simp3l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
17 13 1 2 3 4 5 cdlemc1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( 𝑃 ( ( 𝑃 𝑄 ) 𝑊 ) ) = ( 𝑃 𝑄 ) )
18 12 15 16 17 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ) → ( 𝑃 ( ( 𝑃 𝑄 ) 𝑊 ) ) = ( 𝑃 𝑄 ) )
19 11 18 breqtrrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ) → 𝑄 ( 𝑃 ( ( 𝑃 𝑄 ) 𝑊 ) ) )
20 simp2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ) → 𝐹𝑇 )
21 7 hllatd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ) → 𝐾 ∈ Lat )
22 13 4 atbase ( 𝑃𝐴𝑃 ∈ ( Base ‘ 𝐾 ) )
23 8 22 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ) → 𝑃 ∈ ( Base ‘ 𝐾 ) )
24 13 2 latjcl ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑃 𝑄 ) ∈ ( Base ‘ 𝐾 ) )
25 21 23 15 24 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ) → ( 𝑃 𝑄 ) ∈ ( Base ‘ 𝐾 ) )
26 simp1r ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ) → 𝑊𝐻 )
27 13 5 lhpbase ( 𝑊𝐻𝑊 ∈ ( Base ‘ 𝐾 ) )
28 26 27 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ) → 𝑊 ∈ ( Base ‘ 𝐾 ) )
29 13 3 latmcl ( ( 𝐾 ∈ Lat ∧ ( 𝑃 𝑄 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 𝑄 ) 𝑊 ) ∈ ( Base ‘ 𝐾 ) )
30 21 25 28 29 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ) → ( ( 𝑃 𝑄 ) 𝑊 ) ∈ ( Base ‘ 𝐾 ) )
31 13 2 latjcl ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝑃 𝑄 ) 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝑃 ( ( 𝑃 𝑄 ) 𝑊 ) ) ∈ ( Base ‘ 𝐾 ) )
32 21 23 30 31 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ) → ( 𝑃 ( ( 𝑃 𝑄 ) 𝑊 ) ) ∈ ( Base ‘ 𝐾 ) )
33 13 1 5 6 ltrnle ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑄 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑃 ( ( 𝑃 𝑄 ) 𝑊 ) ) ∈ ( Base ‘ 𝐾 ) ) ) → ( 𝑄 ( 𝑃 ( ( 𝑃 𝑄 ) 𝑊 ) ) ↔ ( 𝐹𝑄 ) ( 𝐹 ‘ ( 𝑃 ( ( 𝑃 𝑄 ) 𝑊 ) ) ) ) )
34 12 20 15 32 33 syl112anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ) → ( 𝑄 ( 𝑃 ( ( 𝑃 𝑄 ) 𝑊 ) ) ↔ ( 𝐹𝑄 ) ( 𝐹 ‘ ( 𝑃 ( ( 𝑃 𝑄 ) 𝑊 ) ) ) ) )
35 19 34 mpbid ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ) → ( 𝐹𝑄 ) ( 𝐹 ‘ ( 𝑃 ( ( 𝑃 𝑄 ) 𝑊 ) ) ) )
36 13 2 5 6 ltrnj ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝑃 𝑄 ) 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) ) → ( 𝐹 ‘ ( 𝑃 ( ( 𝑃 𝑄 ) 𝑊 ) ) ) = ( ( 𝐹𝑃 ) ( 𝐹 ‘ ( ( 𝑃 𝑄 ) 𝑊 ) ) ) )
37 12 20 23 30 36 syl112anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ) → ( 𝐹 ‘ ( 𝑃 ( ( 𝑃 𝑄 ) 𝑊 ) ) ) = ( ( 𝐹𝑃 ) ( 𝐹 ‘ ( ( 𝑃 𝑄 ) 𝑊 ) ) ) )
38 13 1 3 latmle2 ( ( 𝐾 ∈ Lat ∧ ( 𝑃 𝑄 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 𝑄 ) 𝑊 ) 𝑊 )
39 21 25 28 38 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ) → ( ( 𝑃 𝑄 ) 𝑊 ) 𝑊 )
40 13 1 5 6 ltrnval1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( ( ( 𝑃 𝑄 ) 𝑊 ) ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝑃 𝑄 ) 𝑊 ) 𝑊 ) ) → ( 𝐹 ‘ ( ( 𝑃 𝑄 ) 𝑊 ) ) = ( ( 𝑃 𝑄 ) 𝑊 ) )
41 12 20 30 39 40 syl112anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ) → ( 𝐹 ‘ ( ( 𝑃 𝑄 ) 𝑊 ) ) = ( ( 𝑃 𝑄 ) 𝑊 ) )
42 41 oveq2d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ) → ( ( 𝐹𝑃 ) ( 𝐹 ‘ ( ( 𝑃 𝑄 ) 𝑊 ) ) ) = ( ( 𝐹𝑃 ) ( ( 𝑃 𝑄 ) 𝑊 ) ) )
43 37 42 eqtrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ) → ( 𝐹 ‘ ( 𝑃 ( ( 𝑃 𝑄 ) 𝑊 ) ) ) = ( ( 𝐹𝑃 ) ( ( 𝑃 𝑄 ) 𝑊 ) ) )
44 35 43 breqtrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ) → ( 𝐹𝑄 ) ( ( 𝐹𝑃 ) ( ( 𝑃 𝑄 ) 𝑊 ) ) )