Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemc2.l |
|
2 |
|
cdlemc2.j |
|
3 |
|
cdlemc2.m |
|
4 |
|
cdlemc2.a |
|
5 |
|
cdlemc2.h |
|
6 |
|
cdlemc2.t |
|
7 |
|
simp1l |
|
8 |
|
simp3ll |
|
9 |
|
simp3rl |
|
10 |
1 2 4
|
hlatlej2 |
|
11 |
7 8 9 10
|
syl3anc |
|
12 |
|
simp1 |
|
13 |
|
eqid |
|
14 |
13 4
|
atbase |
|
15 |
9 14
|
syl |
|
16 |
|
simp3l |
|
17 |
13 1 2 3 4 5
|
cdlemc1 |
|
18 |
12 15 16 17
|
syl3anc |
|
19 |
11 18
|
breqtrrd |
|
20 |
|
simp2 |
|
21 |
7
|
hllatd |
|
22 |
13 4
|
atbase |
|
23 |
8 22
|
syl |
|
24 |
13 2
|
latjcl |
|
25 |
21 23 15 24
|
syl3anc |
|
26 |
|
simp1r |
|
27 |
13 5
|
lhpbase |
|
28 |
26 27
|
syl |
|
29 |
13 3
|
latmcl |
|
30 |
21 25 28 29
|
syl3anc |
|
31 |
13 2
|
latjcl |
|
32 |
21 23 30 31
|
syl3anc |
|
33 |
13 1 5 6
|
ltrnle |
|
34 |
12 20 15 32 33
|
syl112anc |
|
35 |
19 34
|
mpbid |
|
36 |
13 2 5 6
|
ltrnj |
|
37 |
12 20 23 30 36
|
syl112anc |
|
38 |
13 1 3
|
latmle2 |
|
39 |
21 25 28 38
|
syl3anc |
|
40 |
13 1 5 6
|
ltrnval1 |
|
41 |
12 20 30 39 40
|
syl112anc |
|
42 |
41
|
oveq2d |
|
43 |
37 42
|
eqtrd |
|
44 |
35 43
|
breqtrd |
|