Metamath Proof Explorer


Theorem ltrnj

Description: Lattice translation of a meet. TODO: change antecedent to K e. HL (Contributed by NM, 25-May-2012)

Ref Expression
Hypotheses ltrnj.b B = Base K
ltrnj.j ˙ = join K
ltrnj.h H = LHyp K
ltrnj.t T = LTrn K W
Assertion ltrnj K HL W H F T X B Y B F X ˙ Y = F X ˙ F Y

Proof

Step Hyp Ref Expression
1 ltrnj.b B = Base K
2 ltrnj.j ˙ = join K
3 ltrnj.h H = LHyp K
4 ltrnj.t T = LTrn K W
5 simp1l K HL W H F T X B Y B K HL
6 5 hllatd K HL W H F T X B Y B K Lat
7 eqid LAut K = LAut K
8 3 7 4 ltrnlaut K HL W H F T F LAut K
9 8 3adant3 K HL W H F T X B Y B F LAut K
10 simp3l K HL W H F T X B Y B X B
11 simp3r K HL W H F T X B Y B Y B
12 1 2 7 lautj K Lat F LAut K X B Y B F X ˙ Y = F X ˙ F Y
13 6 9 10 11 12 syl13anc K HL W H F T X B Y B F X ˙ Y = F X ˙ F Y