Metamath Proof Explorer


Theorem ltrncvr

Description: Covering property of a lattice translation. (Contributed by NM, 20-May-2012)

Ref Expression
Hypotheses ltrncvr.b B=BaseK
ltrncvr.c C=K
ltrncvr.h H=LHypK
ltrncvr.t T=LTrnKW
Assertion ltrncvr KVWHFTXBYBXCYFXCFY

Proof

Step Hyp Ref Expression
1 ltrncvr.b B=BaseK
2 ltrncvr.c C=K
3 ltrncvr.h H=LHypK
4 ltrncvr.t T=LTrnKW
5 simp1l KVWHFTXBYBKV
6 eqid LAutK=LAutK
7 3 6 4 ltrnlaut KVWHFTFLAutK
8 7 3adant3 KVWHFTXBYBFLAutK
9 simp3l KVWHFTXBYBXB
10 simp3r KVWHFTXBYBYB
11 1 2 6 lautcvr KVFLAutKXBYBXCYFXCFY
12 5 8 9 10 11 syl13anc KVWHFTXBYBXCYFXCFY