Metamath Proof Explorer


Theorem cdlemc3

Description: Part of proof of Lemma C in Crawley p. 113. (Contributed by NM, 26-May-2012)

Ref Expression
Hypotheses cdlemc3.l ˙ = K
cdlemc3.j ˙ = join K
cdlemc3.m ˙ = meet K
cdlemc3.a A = Atoms K
cdlemc3.h H = LHyp K
cdlemc3.t T = LTrn K W
cdlemc3.r R = trL K W
Assertion cdlemc3 K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W F P ˙ Q ˙ R F Q ˙ P ˙ F P

Proof

Step Hyp Ref Expression
1 cdlemc3.l ˙ = K
2 cdlemc3.j ˙ = join K
3 cdlemc3.m ˙ = meet K
4 cdlemc3.a A = Atoms K
5 cdlemc3.h H = LHyp K
6 cdlemc3.t T = LTrn K W
7 cdlemc3.r R = trL K W
8 simpll K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W K HL
9 simpl K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W K HL W H
10 simpr1 K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W F T
11 simpr2l K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W P A
12 1 4 5 6 ltrnat K HL W H F T P A F P A
13 9 10 11 12 syl3anc K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W F P A
14 simpr3l K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W Q A
15 eqid Base K = Base K
16 15 5 6 7 trlcl K HL W H F T R F Base K
17 10 16 syldan K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W R F Base K
18 1 4 5 6 ltrnel K HL W H F T P A ¬ P ˙ W F P A ¬ F P ˙ W
19 18 3adant3r3 K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W F P A ¬ F P ˙ W
20 1 4 5 6 7 trlnle K HL W H F T F P A ¬ F P ˙ W ¬ F P ˙ R F
21 9 10 19 20 syl3anc K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W ¬ F P ˙ R F
22 15 1 2 4 hlexch2 K HL F P A Q A R F Base K ¬ F P ˙ R F F P ˙ Q ˙ R F Q ˙ F P ˙ R F
23 8 13 14 17 21 22 syl131anc K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W F P ˙ Q ˙ R F Q ˙ F P ˙ R F
24 1 2 4 5 6 7 trljat2 K HL W H F T P A ¬ P ˙ W F P ˙ R F = P ˙ F P
25 24 3adant3r3 K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W F P ˙ R F = P ˙ F P
26 25 breq2d K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W Q ˙ F P ˙ R F Q ˙ P ˙ F P
27 23 26 sylibd K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W F P ˙ Q ˙ R F Q ˙ P ˙ F P