Metamath Proof Explorer


Theorem cdlemc4

Description: Part of proof of Lemma C in Crawley p. 113. (Contributed by NM, 26-May-2012)

Ref Expression
Hypotheses cdlemc3.l ˙=K
cdlemc3.j ˙=joinK
cdlemc3.m ˙=meetK
cdlemc3.a A=AtomsK
cdlemc3.h H=LHypK
cdlemc3.t T=LTrnKW
cdlemc3.r R=trLKW
Assertion cdlemc4 KHLWHFTPA¬P˙WQA¬Q˙W¬Q˙P˙FPQ˙RFFP˙P˙Q˙W

Proof

Step Hyp Ref Expression
1 cdlemc3.l ˙=K
2 cdlemc3.j ˙=joinK
3 cdlemc3.m ˙=meetK
4 cdlemc3.a A=AtomsK
5 cdlemc3.h H=LHypK
6 cdlemc3.t T=LTrnKW
7 cdlemc3.r R=trLKW
8 simpll KHLWHFTPA¬P˙WQA¬Q˙WKHL
9 8 hllatd KHLWHFTPA¬P˙WQA¬Q˙WKLat
10 simpl KHLWHFTPA¬P˙WQA¬Q˙WKHLWH
11 simpr1 KHLWHFTPA¬P˙WQA¬Q˙WFT
12 simpr2l KHLWHFTPA¬P˙WQA¬Q˙WPA
13 eqid BaseK=BaseK
14 13 4 atbase PAPBaseK
15 12 14 syl KHLWHFTPA¬P˙WQA¬Q˙WPBaseK
16 13 5 6 ltrncl KHLWHFTPBaseKFPBaseK
17 10 11 15 16 syl3anc KHLWHFTPA¬P˙WQA¬Q˙WFPBaseK
18 simpr3l KHLWHFTPA¬P˙WQA¬Q˙WQA
19 13 2 4 hlatjcl KHLPAQAP˙QBaseK
20 8 12 18 19 syl3anc KHLWHFTPA¬P˙WQA¬Q˙WP˙QBaseK
21 13 5 lhpbase WHWBaseK
22 21 ad2antlr KHLWHFTPA¬P˙WQA¬Q˙WWBaseK
23 13 3 latmcl KLatP˙QBaseKWBaseKP˙Q˙WBaseK
24 9 20 22 23 syl3anc KHLWHFTPA¬P˙WQA¬Q˙WP˙Q˙WBaseK
25 13 1 2 latlej1 KLatFPBaseKP˙Q˙WBaseKFP˙FP˙P˙Q˙W
26 9 17 24 25 syl3anc KHLWHFTPA¬P˙WQA¬Q˙WFP˙FP˙P˙Q˙W
27 breq2 Q˙RF=FP˙P˙Q˙WFP˙Q˙RFFP˙FP˙P˙Q˙W
28 26 27 syl5ibrcom KHLWHFTPA¬P˙WQA¬Q˙WQ˙RF=FP˙P˙Q˙WFP˙Q˙RF
29 1 2 3 4 5 6 7 cdlemc3 KHLWHFTPA¬P˙WQA¬Q˙WFP˙Q˙RFQ˙P˙FP
30 28 29 syld KHLWHFTPA¬P˙WQA¬Q˙WQ˙RF=FP˙P˙Q˙WQ˙P˙FP
31 30 necon3bd KHLWHFTPA¬P˙WQA¬Q˙W¬Q˙P˙FPQ˙RFFP˙P˙Q˙W
32 31 3impia KHLWHFTPA¬P˙WQA¬Q˙W¬Q˙P˙FPQ˙RFFP˙P˙Q˙W