Metamath Proof Explorer


Theorem cdlemg43

Description: Part of proof of Lemma G of Crawley p. 116, third line of third paragraph on p. 117. (Contributed by NM, 3-Jun-2013)

Ref Expression
Hypotheses cdlemg42.l ˙ = K
cdlemg42.j ˙ = join K
cdlemg42.a A = Atoms K
cdlemg42.h H = LHyp K
cdlemg42.t T = LTrn K W
cdlemg42.r R = trL K W
cdlemg42.m ˙ = meet K
Assertion cdlemg43 K HL W H F T G T P A ¬ P ˙ W G P P R F R G F G P = G P ˙ R F ˙ F P ˙ R G

Proof

Step Hyp Ref Expression
1 cdlemg42.l ˙ = K
2 cdlemg42.j ˙ = join K
3 cdlemg42.a A = Atoms K
4 cdlemg42.h H = LHyp K
5 cdlemg42.t T = LTrn K W
6 cdlemg42.r R = trL K W
7 cdlemg42.m ˙ = meet K
8 simp1 K HL W H F T G T P A ¬ P ˙ W G P P R F R G K HL W H
9 simp2l K HL W H F T G T P A ¬ P ˙ W G P P R F R G F T
10 simp31 K HL W H F T G T P A ¬ P ˙ W G P P R F R G P A ¬ P ˙ W
11 simp2r K HL W H F T G T P A ¬ P ˙ W G P P R F R G G T
12 1 3 4 5 ltrnel K HL W H G T P A ¬ P ˙ W G P A ¬ G P ˙ W
13 8 11 10 12 syl3anc K HL W H F T G T P A ¬ P ˙ W G P P R F R G G P A ¬ G P ˙ W
14 1 2 3 4 5 6 cdlemg42 K HL W H F T G T P A ¬ P ˙ W G P P R F R G ¬ G P ˙ P ˙ F P
15 1 2 7 3 4 5 6 cdlemc K HL W H F T P A ¬ P ˙ W G P A ¬ G P ˙ W ¬ G P ˙ P ˙ F P F G P = G P ˙ R F ˙ F P ˙ P ˙ G P ˙ W
16 8 9 10 13 14 15 syl131anc K HL W H F T G T P A ¬ P ˙ W G P P R F R G F G P = G P ˙ R F ˙ F P ˙ P ˙ G P ˙ W
17 1 2 7 3 4 5 6 trlval2 K HL W H G T P A ¬ P ˙ W R G = P ˙ G P ˙ W
18 8 11 10 17 syl3anc K HL W H F T G T P A ¬ P ˙ W G P P R F R G R G = P ˙ G P ˙ W
19 18 oveq2d K HL W H F T G T P A ¬ P ˙ W G P P R F R G F P ˙ R G = F P ˙ P ˙ G P ˙ W
20 19 oveq2d K HL W H F T G T P A ¬ P ˙ W G P P R F R G G P ˙ R F ˙ F P ˙ R G = G P ˙ R F ˙ F P ˙ P ˙ G P ˙ W
21 16 20 eqtr4d K HL W H F T G T P A ¬ P ˙ W G P P R F R G F G P = G P ˙ R F ˙ F P ˙ R G