Metamath Proof Explorer


Theorem cdlemg44a

Description: Part of proof of Lemma G of Crawley p. 116, fourth line of third paragraph on p. 117: "so fg(p) = gf(p)." (Contributed by NM, 3-Jun-2013)

Ref Expression
Hypotheses cdlemg44.h H = LHyp K
cdlemg44.t T = LTrn K W
cdlemg44.r R = trL K W
cdlemg44.l ˙ = K
cdlemg44.a A = Atoms K
Assertion cdlemg44a K HL W H F T G T P A ¬ P ˙ W F P P G P P R F R G F G P = G F P

Proof

Step Hyp Ref Expression
1 cdlemg44.h H = LHyp K
2 cdlemg44.t T = LTrn K W
3 cdlemg44.r R = trL K W
4 cdlemg44.l ˙ = K
5 cdlemg44.a A = Atoms K
6 simp1l K HL W H F T G T P A ¬ P ˙ W F P P G P P R F R G K HL
7 6 hllatd K HL W H F T G T P A ¬ P ˙ W F P P G P P R F R G K Lat
8 simp1 K HL W H F T G T P A ¬ P ˙ W F P P G P P R F R G K HL W H
9 simp22 K HL W H F T G T P A ¬ P ˙ W F P P G P P R F R G G T
10 simp23l K HL W H F T G T P A ¬ P ˙ W F P P G P P R F R G P A
11 eqid Base K = Base K
12 11 5 atbase P A P Base K
13 10 12 syl K HL W H F T G T P A ¬ P ˙ W F P P G P P R F R G P Base K
14 11 1 2 ltrncl K HL W H G T P Base K G P Base K
15 8 9 13 14 syl3anc K HL W H F T G T P A ¬ P ˙ W F P P G P P R F R G G P Base K
16 simp21 K HL W H F T G T P A ¬ P ˙ W F P P G P P R F R G F T
17 11 1 2 3 trlcl K HL W H F T R F Base K
18 8 16 17 syl2anc K HL W H F T G T P A ¬ P ˙ W F P P G P P R F R G R F Base K
19 eqid join K = join K
20 11 19 latjcl K Lat G P Base K R F Base K G P join K R F Base K
21 7 15 18 20 syl3anc K HL W H F T G T P A ¬ P ˙ W F P P G P P R F R G G P join K R F Base K
22 11 1 2 ltrncl K HL W H F T P Base K F P Base K
23 8 16 13 22 syl3anc K HL W H F T G T P A ¬ P ˙ W F P P G P P R F R G F P Base K
24 11 1 2 3 trlcl K HL W H G T R G Base K
25 8 9 24 syl2anc K HL W H F T G T P A ¬ P ˙ W F P P G P P R F R G R G Base K
26 11 19 latjcl K Lat F P Base K R G Base K F P join K R G Base K
27 7 23 25 26 syl3anc K HL W H F T G T P A ¬ P ˙ W F P P G P P R F R G F P join K R G Base K
28 eqid meet K = meet K
29 11 28 latmcom K Lat G P join K R F Base K F P join K R G Base K G P join K R F meet K F P join K R G = F P join K R G meet K G P join K R F
30 7 21 27 29 syl3anc K HL W H F T G T P A ¬ P ˙ W F P P G P P R F R G G P join K R F meet K F P join K R G = F P join K R G meet K G P join K R F
31 simp23 K HL W H F T G T P A ¬ P ˙ W F P P G P P R F R G P A ¬ P ˙ W
32 simp32 K HL W H F T G T P A ¬ P ˙ W F P P G P P R F R G G P P
33 simp33 K HL W H F T G T P A ¬ P ˙ W F P P G P P R F R G R F R G
34 4 19 5 1 2 3 28 cdlemg43 K HL W H F T G T P A ¬ P ˙ W G P P R F R G F G P = G P join K R F meet K F P join K R G
35 8 16 9 31 32 33 34 syl123anc K HL W H F T G T P A ¬ P ˙ W F P P G P P R F R G F G P = G P join K R F meet K F P join K R G
36 simp31 K HL W H F T G T P A ¬ P ˙ W F P P G P P R F R G F P P
37 33 necomd K HL W H F T G T P A ¬ P ˙ W F P P G P P R F R G R G R F
38 4 19 5 1 2 3 28 cdlemg43 K HL W H G T F T P A ¬ P ˙ W F P P R G R F G F P = F P join K R G meet K G P join K R F
39 8 9 16 31 36 37 38 syl123anc K HL W H F T G T P A ¬ P ˙ W F P P G P P R F R G G F P = F P join K R G meet K G P join K R F
40 30 35 39 3eqtr4d K HL W H F T G T P A ¬ P ˙ W F P P G P P R F R G F G P = G F P