Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg44.h |
|
2 |
|
cdlemg44.t |
|
3 |
|
cdlemg44.r |
|
4 |
|
cdlemg44.l |
|
5 |
|
cdlemg44.a |
|
6 |
|
simp1l |
|
7 |
6
|
hllatd |
|
8 |
|
simp1 |
|
9 |
|
simp22 |
|
10 |
|
simp23l |
|
11 |
|
eqid |
|
12 |
11 5
|
atbase |
|
13 |
10 12
|
syl |
|
14 |
11 1 2
|
ltrncl |
|
15 |
8 9 13 14
|
syl3anc |
|
16 |
|
simp21 |
|
17 |
11 1 2 3
|
trlcl |
|
18 |
8 16 17
|
syl2anc |
|
19 |
|
eqid |
|
20 |
11 19
|
latjcl |
|
21 |
7 15 18 20
|
syl3anc |
|
22 |
11 1 2
|
ltrncl |
|
23 |
8 16 13 22
|
syl3anc |
|
24 |
11 1 2 3
|
trlcl |
|
25 |
8 9 24
|
syl2anc |
|
26 |
11 19
|
latjcl |
|
27 |
7 23 25 26
|
syl3anc |
|
28 |
|
eqid |
|
29 |
11 28
|
latmcom |
|
30 |
7 21 27 29
|
syl3anc |
|
31 |
|
simp23 |
|
32 |
|
simp32 |
|
33 |
|
simp33 |
|
34 |
4 19 5 1 2 3 28
|
cdlemg43 |
|
35 |
8 16 9 31 32 33 34
|
syl123anc |
|
36 |
|
simp31 |
|
37 |
33
|
necomd |
|
38 |
4 19 5 1 2 3 28
|
cdlemg43 |
|
39 |
8 9 16 31 36 37 38
|
syl123anc |
|
40 |
30 35 39
|
3eqtr4d |
|