Metamath Proof Explorer


Theorem cdlemg44b

Description: Eliminate ( FP ) =/= P , ( GP ) =/= P from cdlemg44a . (Contributed by NM, 3-Jun-2013)

Ref Expression
Hypotheses cdlemg44.h H = LHyp K
cdlemg44.t T = LTrn K W
cdlemg44.r R = trL K W
cdlemg44.l ˙ = K
cdlemg44.a A = Atoms K
Assertion cdlemg44b K HL W H F T G T P A ¬ P ˙ W R F R G F G P = G F P

Proof

Step Hyp Ref Expression
1 cdlemg44.h H = LHyp K
2 cdlemg44.t T = LTrn K W
3 cdlemg44.r R = trL K W
4 cdlemg44.l ˙ = K
5 cdlemg44.a A = Atoms K
6 simpl1 K HL W H F T G T P A ¬ P ˙ W R F R G F P = P K HL W H
7 simpl21 K HL W H F T G T P A ¬ P ˙ W R F R G F P = P F T
8 simpl23 K HL W H F T G T P A ¬ P ˙ W R F R G F P = P P A ¬ P ˙ W
9 simpl22 K HL W H F T G T P A ¬ P ˙ W R F R G F P = P G T
10 4 5 1 2 ltrnel K HL W H G T P A ¬ P ˙ W G P A ¬ G P ˙ W
11 6 9 8 10 syl3anc K HL W H F T G T P A ¬ P ˙ W R F R G F P = P G P A ¬ G P ˙ W
12 simpr K HL W H F T G T P A ¬ P ˙ W R F R G F P = P F P = P
13 4 5 1 2 ltrnateq K HL W H F T P A ¬ P ˙ W G P A ¬ G P ˙ W F P = P F G P = G P
14 6 7 8 11 12 13 syl131anc K HL W H F T G T P A ¬ P ˙ W R F R G F P = P F G P = G P
15 12 fveq2d K HL W H F T G T P A ¬ P ˙ W R F R G F P = P G F P = G P
16 14 15 eqtr4d K HL W H F T G T P A ¬ P ˙ W R F R G F P = P F G P = G F P
17 simpr K HL W H F T G T P A ¬ P ˙ W R F R G G P = P G P = P
18 17 fveq2d K HL W H F T G T P A ¬ P ˙ W R F R G G P = P F G P = F P
19 simpl1 K HL W H F T G T P A ¬ P ˙ W R F R G G P = P K HL W H
20 simpl22 K HL W H F T G T P A ¬ P ˙ W R F R G G P = P G T
21 simpl23 K HL W H F T G T P A ¬ P ˙ W R F R G G P = P P A ¬ P ˙ W
22 simpl21 K HL W H F T G T P A ¬ P ˙ W R F R G G P = P F T
23 4 5 1 2 ltrnel K HL W H F T P A ¬ P ˙ W F P A ¬ F P ˙ W
24 19 22 21 23 syl3anc K HL W H F T G T P A ¬ P ˙ W R F R G G P = P F P A ¬ F P ˙ W
25 4 5 1 2 ltrnateq K HL W H G T P A ¬ P ˙ W F P A ¬ F P ˙ W G P = P G F P = F P
26 19 20 21 24 17 25 syl131anc K HL W H F T G T P A ¬ P ˙ W R F R G G P = P G F P = F P
27 18 26 eqtr4d K HL W H F T G T P A ¬ P ˙ W R F R G G P = P F G P = G F P
28 simpl1 K HL W H F T G T P A ¬ P ˙ W R F R G F P P G P P K HL W H
29 simpl2 K HL W H F T G T P A ¬ P ˙ W R F R G F P P G P P F T G T P A ¬ P ˙ W
30 simprl K HL W H F T G T P A ¬ P ˙ W R F R G F P P G P P F P P
31 simprr K HL W H F T G T P A ¬ P ˙ W R F R G F P P G P P G P P
32 simpl3 K HL W H F T G T P A ¬ P ˙ W R F R G F P P G P P R F R G
33 1 2 3 4 5 cdlemg44a K HL W H F T G T P A ¬ P ˙ W F P P G P P R F R G F G P = G F P
34 28 29 30 31 32 33 syl113anc K HL W H F T G T P A ¬ P ˙ W R F R G F P P G P P F G P = G F P
35 16 27 34 pm2.61da2ne K HL W H F T G T P A ¬ P ˙ W R F R G F G P = G F P