| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdlemg44.h |
|- H = ( LHyp ` K ) |
| 2 |
|
cdlemg44.t |
|- T = ( ( LTrn ` K ) ` W ) |
| 3 |
|
cdlemg44.r |
|- R = ( ( trL ` K ) ` W ) |
| 4 |
|
cdlemg44.l |
|- .<_ = ( le ` K ) |
| 5 |
|
cdlemg44.a |
|- A = ( Atoms ` K ) |
| 6 |
|
simpl1 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( R ` F ) =/= ( R ` G ) ) /\ ( F ` P ) = P ) -> ( K e. HL /\ W e. H ) ) |
| 7 |
|
simpl21 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( R ` F ) =/= ( R ` G ) ) /\ ( F ` P ) = P ) -> F e. T ) |
| 8 |
|
simpl23 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( R ` F ) =/= ( R ` G ) ) /\ ( F ` P ) = P ) -> ( P e. A /\ -. P .<_ W ) ) |
| 9 |
|
simpl22 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( R ` F ) =/= ( R ` G ) ) /\ ( F ` P ) = P ) -> G e. T ) |
| 10 |
4 5 1 2
|
ltrnel |
|- ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( G ` P ) e. A /\ -. ( G ` P ) .<_ W ) ) |
| 11 |
6 9 8 10
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( R ` F ) =/= ( R ` G ) ) /\ ( F ` P ) = P ) -> ( ( G ` P ) e. A /\ -. ( G ` P ) .<_ W ) ) |
| 12 |
|
simpr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( R ` F ) =/= ( R ` G ) ) /\ ( F ` P ) = P ) -> ( F ` P ) = P ) |
| 13 |
4 5 1 2
|
ltrnateq |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( ( G ` P ) e. A /\ -. ( G ` P ) .<_ W ) ) /\ ( F ` P ) = P ) -> ( F ` ( G ` P ) ) = ( G ` P ) ) |
| 14 |
6 7 8 11 12 13
|
syl131anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( R ` F ) =/= ( R ` G ) ) /\ ( F ` P ) = P ) -> ( F ` ( G ` P ) ) = ( G ` P ) ) |
| 15 |
12
|
fveq2d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( R ` F ) =/= ( R ` G ) ) /\ ( F ` P ) = P ) -> ( G ` ( F ` P ) ) = ( G ` P ) ) |
| 16 |
14 15
|
eqtr4d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( R ` F ) =/= ( R ` G ) ) /\ ( F ` P ) = P ) -> ( F ` ( G ` P ) ) = ( G ` ( F ` P ) ) ) |
| 17 |
|
simpr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( R ` F ) =/= ( R ` G ) ) /\ ( G ` P ) = P ) -> ( G ` P ) = P ) |
| 18 |
17
|
fveq2d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( R ` F ) =/= ( R ` G ) ) /\ ( G ` P ) = P ) -> ( F ` ( G ` P ) ) = ( F ` P ) ) |
| 19 |
|
simpl1 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( R ` F ) =/= ( R ` G ) ) /\ ( G ` P ) = P ) -> ( K e. HL /\ W e. H ) ) |
| 20 |
|
simpl22 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( R ` F ) =/= ( R ` G ) ) /\ ( G ` P ) = P ) -> G e. T ) |
| 21 |
|
simpl23 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( R ` F ) =/= ( R ` G ) ) /\ ( G ` P ) = P ) -> ( P e. A /\ -. P .<_ W ) ) |
| 22 |
|
simpl21 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( R ` F ) =/= ( R ` G ) ) /\ ( G ` P ) = P ) -> F e. T ) |
| 23 |
4 5 1 2
|
ltrnel |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( F ` P ) e. A /\ -. ( F ` P ) .<_ W ) ) |
| 24 |
19 22 21 23
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( R ` F ) =/= ( R ` G ) ) /\ ( G ` P ) = P ) -> ( ( F ` P ) e. A /\ -. ( F ` P ) .<_ W ) ) |
| 25 |
4 5 1 2
|
ltrnateq |
|- ( ( ( K e. HL /\ W e. H ) /\ ( G e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( ( F ` P ) e. A /\ -. ( F ` P ) .<_ W ) ) /\ ( G ` P ) = P ) -> ( G ` ( F ` P ) ) = ( F ` P ) ) |
| 26 |
19 20 21 24 17 25
|
syl131anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( R ` F ) =/= ( R ` G ) ) /\ ( G ` P ) = P ) -> ( G ` ( F ` P ) ) = ( F ` P ) ) |
| 27 |
18 26
|
eqtr4d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( R ` F ) =/= ( R ` G ) ) /\ ( G ` P ) = P ) -> ( F ` ( G ` P ) ) = ( G ` ( F ` P ) ) ) |
| 28 |
|
simpl1 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( R ` F ) =/= ( R ` G ) ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P ) ) -> ( K e. HL /\ W e. H ) ) |
| 29 |
|
simpl2 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( R ` F ) =/= ( R ` G ) ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P ) ) -> ( F e. T /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) ) |
| 30 |
|
simprl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( R ` F ) =/= ( R ` G ) ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P ) ) -> ( F ` P ) =/= P ) |
| 31 |
|
simprr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( R ` F ) =/= ( R ` G ) ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P ) ) -> ( G ` P ) =/= P ) |
| 32 |
|
simpl3 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( R ` F ) =/= ( R ` G ) ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P ) ) -> ( R ` F ) =/= ( R ` G ) ) |
| 33 |
1 2 3 4 5
|
cdlemg44a |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( F ` ( G ` P ) ) = ( G ` ( F ` P ) ) ) |
| 34 |
28 29 30 31 32 33
|
syl113anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( R ` F ) =/= ( R ` G ) ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P ) ) -> ( F ` ( G ` P ) ) = ( G ` ( F ` P ) ) ) |
| 35 |
16 27 34
|
pm2.61da2ne |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( R ` F ) =/= ( R ` G ) ) -> ( F ` ( G ` P ) ) = ( G ` ( F ` P ) ) ) |