Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg44.h |
|- H = ( LHyp ` K ) |
2 |
|
cdlemg44.t |
|- T = ( ( LTrn ` K ) ` W ) |
3 |
|
cdlemg44.r |
|- R = ( ( trL ` K ) ` W ) |
4 |
|
cdlemg44.l |
|- .<_ = ( le ` K ) |
5 |
|
cdlemg44.a |
|- A = ( Atoms ` K ) |
6 |
|
simpl1 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( R ` F ) =/= ( R ` G ) ) /\ ( F ` P ) = P ) -> ( K e. HL /\ W e. H ) ) |
7 |
|
simpl21 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( R ` F ) =/= ( R ` G ) ) /\ ( F ` P ) = P ) -> F e. T ) |
8 |
|
simpl23 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( R ` F ) =/= ( R ` G ) ) /\ ( F ` P ) = P ) -> ( P e. A /\ -. P .<_ W ) ) |
9 |
|
simpl22 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( R ` F ) =/= ( R ` G ) ) /\ ( F ` P ) = P ) -> G e. T ) |
10 |
4 5 1 2
|
ltrnel |
|- ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( G ` P ) e. A /\ -. ( G ` P ) .<_ W ) ) |
11 |
6 9 8 10
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( R ` F ) =/= ( R ` G ) ) /\ ( F ` P ) = P ) -> ( ( G ` P ) e. A /\ -. ( G ` P ) .<_ W ) ) |
12 |
|
simpr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( R ` F ) =/= ( R ` G ) ) /\ ( F ` P ) = P ) -> ( F ` P ) = P ) |
13 |
4 5 1 2
|
ltrnateq |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( ( G ` P ) e. A /\ -. ( G ` P ) .<_ W ) ) /\ ( F ` P ) = P ) -> ( F ` ( G ` P ) ) = ( G ` P ) ) |
14 |
6 7 8 11 12 13
|
syl131anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( R ` F ) =/= ( R ` G ) ) /\ ( F ` P ) = P ) -> ( F ` ( G ` P ) ) = ( G ` P ) ) |
15 |
12
|
fveq2d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( R ` F ) =/= ( R ` G ) ) /\ ( F ` P ) = P ) -> ( G ` ( F ` P ) ) = ( G ` P ) ) |
16 |
14 15
|
eqtr4d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( R ` F ) =/= ( R ` G ) ) /\ ( F ` P ) = P ) -> ( F ` ( G ` P ) ) = ( G ` ( F ` P ) ) ) |
17 |
|
simpr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( R ` F ) =/= ( R ` G ) ) /\ ( G ` P ) = P ) -> ( G ` P ) = P ) |
18 |
17
|
fveq2d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( R ` F ) =/= ( R ` G ) ) /\ ( G ` P ) = P ) -> ( F ` ( G ` P ) ) = ( F ` P ) ) |
19 |
|
simpl1 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( R ` F ) =/= ( R ` G ) ) /\ ( G ` P ) = P ) -> ( K e. HL /\ W e. H ) ) |
20 |
|
simpl22 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( R ` F ) =/= ( R ` G ) ) /\ ( G ` P ) = P ) -> G e. T ) |
21 |
|
simpl23 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( R ` F ) =/= ( R ` G ) ) /\ ( G ` P ) = P ) -> ( P e. A /\ -. P .<_ W ) ) |
22 |
|
simpl21 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( R ` F ) =/= ( R ` G ) ) /\ ( G ` P ) = P ) -> F e. T ) |
23 |
4 5 1 2
|
ltrnel |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( F ` P ) e. A /\ -. ( F ` P ) .<_ W ) ) |
24 |
19 22 21 23
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( R ` F ) =/= ( R ` G ) ) /\ ( G ` P ) = P ) -> ( ( F ` P ) e. A /\ -. ( F ` P ) .<_ W ) ) |
25 |
4 5 1 2
|
ltrnateq |
|- ( ( ( K e. HL /\ W e. H ) /\ ( G e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( ( F ` P ) e. A /\ -. ( F ` P ) .<_ W ) ) /\ ( G ` P ) = P ) -> ( G ` ( F ` P ) ) = ( F ` P ) ) |
26 |
19 20 21 24 17 25
|
syl131anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( R ` F ) =/= ( R ` G ) ) /\ ( G ` P ) = P ) -> ( G ` ( F ` P ) ) = ( F ` P ) ) |
27 |
18 26
|
eqtr4d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( R ` F ) =/= ( R ` G ) ) /\ ( G ` P ) = P ) -> ( F ` ( G ` P ) ) = ( G ` ( F ` P ) ) ) |
28 |
|
simpl1 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( R ` F ) =/= ( R ` G ) ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P ) ) -> ( K e. HL /\ W e. H ) ) |
29 |
|
simpl2 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( R ` F ) =/= ( R ` G ) ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P ) ) -> ( F e. T /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) ) |
30 |
|
simprl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( R ` F ) =/= ( R ` G ) ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P ) ) -> ( F ` P ) =/= P ) |
31 |
|
simprr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( R ` F ) =/= ( R ` G ) ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P ) ) -> ( G ` P ) =/= P ) |
32 |
|
simpl3 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( R ` F ) =/= ( R ` G ) ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P ) ) -> ( R ` F ) =/= ( R ` G ) ) |
33 |
1 2 3 4 5
|
cdlemg44a |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( F ` ( G ` P ) ) = ( G ` ( F ` P ) ) ) |
34 |
28 29 30 31 32 33
|
syl113anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( R ` F ) =/= ( R ` G ) ) /\ ( ( F ` P ) =/= P /\ ( G ` P ) =/= P ) ) -> ( F ` ( G ` P ) ) = ( G ` ( F ` P ) ) ) |
35 |
16 27 34
|
pm2.61da2ne |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( R ` F ) =/= ( R ` G ) ) -> ( F ` ( G ` P ) ) = ( G ` ( F ` P ) ) ) |