Metamath Proof Explorer


Theorem hlatjidm

Description: Idempotence of join operation. Frequently-used special case of latjcom for atoms. (Contributed by NM, 15-Jul-2012)

Ref Expression
Hypotheses hlatjcom.j
|- .\/ = ( join ` K )
hlatjcom.a
|- A = ( Atoms ` K )
Assertion hlatjidm
|- ( ( K e. HL /\ X e. A ) -> ( X .\/ X ) = X )

Proof

Step Hyp Ref Expression
1 hlatjcom.j
 |-  .\/ = ( join ` K )
2 hlatjcom.a
 |-  A = ( Atoms ` K )
3 hllat
 |-  ( K e. HL -> K e. Lat )
4 eqid
 |-  ( Base ` K ) = ( Base ` K )
5 4 2 atbase
 |-  ( X e. A -> X e. ( Base ` K ) )
6 4 1 latjidm
 |-  ( ( K e. Lat /\ X e. ( Base ` K ) ) -> ( X .\/ X ) = X )
7 3 5 6 syl2an
 |-  ( ( K e. HL /\ X e. A ) -> ( X .\/ X ) = X )