Metamath Proof Explorer


Theorem trlid0b

Description: A lattice translation is the identity iff its trace is zero. (Contributed by NM, 14-Jun-2013)

Ref Expression
Hypotheses trlid0b.b B=BaseK
trlid0b.z 0˙=0.K
trlid0b.h H=LHypK
trlid0b.t T=LTrnKW
trlid0b.r R=trLKW
Assertion trlid0b KHLWHFTF=IBRF=0˙

Proof

Step Hyp Ref Expression
1 trlid0b.b B=BaseK
2 trlid0b.z 0˙=0.K
3 trlid0b.h H=LHypK
4 trlid0b.t T=LTrnKW
5 trlid0b.r R=trLKW
6 eqid AtomsK=AtomsK
7 1 6 3 4 5 trlnidatb KHLWHFTFIBRFAtomsK
8 2 6 3 4 5 trlatn0 KHLWHFTRFAtomsKRF0˙
9 7 8 bitrd KHLWHFTFIBRF0˙
10 9 necon4bid KHLWHFTF=IBRF=0˙