Metamath Proof Explorer


Theorem trlid0b

Description: A lattice translation is the identity iff its trace is zero. (Contributed by NM, 14-Jun-2013)

Ref Expression
Hypotheses trlid0b.b 𝐵 = ( Base ‘ 𝐾 )
trlid0b.z 0 = ( 0. ‘ 𝐾 )
trlid0b.h 𝐻 = ( LHyp ‘ 𝐾 )
trlid0b.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
trlid0b.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
Assertion trlid0b ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ) → ( 𝐹 = ( I ↾ 𝐵 ) ↔ ( 𝑅𝐹 ) = 0 ) )

Proof

Step Hyp Ref Expression
1 trlid0b.b 𝐵 = ( Base ‘ 𝐾 )
2 trlid0b.z 0 = ( 0. ‘ 𝐾 )
3 trlid0b.h 𝐻 = ( LHyp ‘ 𝐾 )
4 trlid0b.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
5 trlid0b.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
6 eqid ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 )
7 1 6 3 4 5 trlnidatb ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ) → ( 𝐹 ≠ ( I ↾ 𝐵 ) ↔ ( 𝑅𝐹 ) ∈ ( Atoms ‘ 𝐾 ) ) )
8 2 6 3 4 5 trlatn0 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ) → ( ( 𝑅𝐹 ) ∈ ( Atoms ‘ 𝐾 ) ↔ ( 𝑅𝐹 ) ≠ 0 ) )
9 7 8 bitrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ) → ( 𝐹 ≠ ( I ↾ 𝐵 ) ↔ ( 𝑅𝐹 ) ≠ 0 ) )
10 9 necon4bid ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ) → ( 𝐹 = ( I ↾ 𝐵 ) ↔ ( 𝑅𝐹 ) = 0 ) )