Step |
Hyp |
Ref |
Expression |
1 |
|
trlid0b.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
trlid0b.z |
⊢ 0 = ( 0. ‘ 𝐾 ) |
3 |
|
trlid0b.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
4 |
|
trlid0b.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
trlid0b.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
eqid |
⊢ ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 ) |
7 |
1 6 3 4 5
|
trlnidatb |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ( 𝐹 ≠ ( I ↾ 𝐵 ) ↔ ( 𝑅 ‘ 𝐹 ) ∈ ( Atoms ‘ 𝐾 ) ) ) |
8 |
2 6 3 4 5
|
trlatn0 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ( ( 𝑅 ‘ 𝐹 ) ∈ ( Atoms ‘ 𝐾 ) ↔ ( 𝑅 ‘ 𝐹 ) ≠ 0 ) ) |
9 |
7 8
|
bitrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ( 𝐹 ≠ ( I ↾ 𝐵 ) ↔ ( 𝑅 ‘ 𝐹 ) ≠ 0 ) ) |
10 |
9
|
necon4bid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ( 𝐹 = ( I ↾ 𝐵 ) ↔ ( 𝑅 ‘ 𝐹 ) = 0 ) ) |