Step |
Hyp |
Ref |
Expression |
1 |
|
trlnidatb.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
trlnidatb.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
3 |
|
trlnidatb.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
4 |
|
trlnidatb.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
trlnidatb.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
1 2 3 4 5
|
trlnidat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) → ( 𝑅 ‘ 𝐹 ) ∈ 𝐴 ) |
7 |
6
|
3expia |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ( 𝐹 ≠ ( I ↾ 𝐵 ) → ( 𝑅 ‘ 𝐹 ) ∈ 𝐴 ) ) |
8 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
9 |
8 2 3
|
lhpexnle |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ∃ 𝑝 ∈ 𝐴 ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ) |
10 |
9
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ∃ 𝑝 ∈ 𝐴 ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ) |
11 |
1 8 2 3 4
|
ltrnideq |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ) ) → ( 𝐹 = ( I ↾ 𝐵 ) ↔ ( 𝐹 ‘ 𝑝 ) = 𝑝 ) ) |
12 |
11
|
3expa |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ) ) → ( 𝐹 = ( I ↾ 𝐵 ) ↔ ( 𝐹 ‘ 𝑝 ) = 𝑝 ) ) |
13 |
|
simp1l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ) ∧ ( 𝐹 ‘ 𝑝 ) = 𝑝 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
14 |
|
simp2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ) ∧ ( 𝐹 ‘ 𝑝 ) = 𝑝 ) → ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ) ) |
15 |
|
simp1r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ) ∧ ( 𝐹 ‘ 𝑝 ) = 𝑝 ) → 𝐹 ∈ 𝑇 ) |
16 |
|
simp3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ) ∧ ( 𝐹 ‘ 𝑝 ) = 𝑝 ) → ( 𝐹 ‘ 𝑝 ) = 𝑝 ) |
17 |
|
eqid |
⊢ ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 ) |
18 |
8 17 2 3 4 5
|
trl0 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝐹 ‘ 𝑝 ) = 𝑝 ) ) → ( 𝑅 ‘ 𝐹 ) = ( 0. ‘ 𝐾 ) ) |
19 |
13 14 15 16 18
|
syl112anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ) ∧ ( 𝐹 ‘ 𝑝 ) = 𝑝 ) → ( 𝑅 ‘ 𝐹 ) = ( 0. ‘ 𝐾 ) ) |
20 |
19
|
3expia |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ) ) → ( ( 𝐹 ‘ 𝑝 ) = 𝑝 → ( 𝑅 ‘ 𝐹 ) = ( 0. ‘ 𝐾 ) ) ) |
21 |
|
simplll |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ) ) → 𝐾 ∈ HL ) |
22 |
|
hlatl |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ AtLat ) |
23 |
17 2
|
atn0 |
⊢ ( ( 𝐾 ∈ AtLat ∧ ( 𝑅 ‘ 𝐹 ) ∈ 𝐴 ) → ( 𝑅 ‘ 𝐹 ) ≠ ( 0. ‘ 𝐾 ) ) |
24 |
23
|
ex |
⊢ ( 𝐾 ∈ AtLat → ( ( 𝑅 ‘ 𝐹 ) ∈ 𝐴 → ( 𝑅 ‘ 𝐹 ) ≠ ( 0. ‘ 𝐾 ) ) ) |
25 |
21 22 24
|
3syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ) ) → ( ( 𝑅 ‘ 𝐹 ) ∈ 𝐴 → ( 𝑅 ‘ 𝐹 ) ≠ ( 0. ‘ 𝐾 ) ) ) |
26 |
25
|
necon2bd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ) ) → ( ( 𝑅 ‘ 𝐹 ) = ( 0. ‘ 𝐾 ) → ¬ ( 𝑅 ‘ 𝐹 ) ∈ 𝐴 ) ) |
27 |
20 26
|
syld |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ) ) → ( ( 𝐹 ‘ 𝑝 ) = 𝑝 → ¬ ( 𝑅 ‘ 𝐹 ) ∈ 𝐴 ) ) |
28 |
12 27
|
sylbid |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ) ) → ( 𝐹 = ( I ↾ 𝐵 ) → ¬ ( 𝑅 ‘ 𝐹 ) ∈ 𝐴 ) ) |
29 |
10 28
|
rexlimddv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ( 𝐹 = ( I ↾ 𝐵 ) → ¬ ( 𝑅 ‘ 𝐹 ) ∈ 𝐴 ) ) |
30 |
29
|
necon2ad |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ( ( 𝑅 ‘ 𝐹 ) ∈ 𝐴 → 𝐹 ≠ ( I ↾ 𝐵 ) ) ) |
31 |
7 30
|
impbid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ( 𝐹 ≠ ( I ↾ 𝐵 ) ↔ ( 𝑅 ‘ 𝐹 ) ∈ 𝐴 ) ) |