Metamath Proof Explorer


Theorem trlnidatb

Description: A lattice translation is not the identity iff its trace is an atom. TODO: Can proofs be reorganized so this goes with trlnidat ? Why do both this and ltrnideq need trlnidat ? (Contributed by NM, 4-Jun-2013)

Ref Expression
Hypotheses trlnidatb.b 𝐵 = ( Base ‘ 𝐾 )
trlnidatb.a 𝐴 = ( Atoms ‘ 𝐾 )
trlnidatb.h 𝐻 = ( LHyp ‘ 𝐾 )
trlnidatb.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
trlnidatb.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
Assertion trlnidatb ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ) → ( 𝐹 ≠ ( I ↾ 𝐵 ) ↔ ( 𝑅𝐹 ) ∈ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 trlnidatb.b 𝐵 = ( Base ‘ 𝐾 )
2 trlnidatb.a 𝐴 = ( Atoms ‘ 𝐾 )
3 trlnidatb.h 𝐻 = ( LHyp ‘ 𝐾 )
4 trlnidatb.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
5 trlnidatb.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
6 1 2 3 4 5 trlnidat ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) → ( 𝑅𝐹 ) ∈ 𝐴 )
7 6 3expia ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ) → ( 𝐹 ≠ ( I ↾ 𝐵 ) → ( 𝑅𝐹 ) ∈ 𝐴 ) )
8 eqid ( le ‘ 𝐾 ) = ( le ‘ 𝐾 )
9 8 2 3 lhpexnle ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ∃ 𝑝𝐴 ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 )
10 9 adantr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ) → ∃ 𝑝𝐴 ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 )
11 1 8 2 3 4 ltrnideq ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑝𝐴 ∧ ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ) ) → ( 𝐹 = ( I ↾ 𝐵 ) ↔ ( 𝐹𝑝 ) = 𝑝 ) )
12 11 3expa ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ) ∧ ( 𝑝𝐴 ∧ ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ) ) → ( 𝐹 = ( I ↾ 𝐵 ) ↔ ( 𝐹𝑝 ) = 𝑝 ) )
13 simp1l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ) ∧ ( 𝑝𝐴 ∧ ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ) ∧ ( 𝐹𝑝 ) = 𝑝 ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
14 simp2 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ) ∧ ( 𝑝𝐴 ∧ ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ) ∧ ( 𝐹𝑝 ) = 𝑝 ) → ( 𝑝𝐴 ∧ ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ) )
15 simp1r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ) ∧ ( 𝑝𝐴 ∧ ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ) ∧ ( 𝐹𝑝 ) = 𝑝 ) → 𝐹𝑇 )
16 simp3 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ) ∧ ( 𝑝𝐴 ∧ ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ) ∧ ( 𝐹𝑝 ) = 𝑝 ) → ( 𝐹𝑝 ) = 𝑝 )
17 eqid ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 )
18 8 17 2 3 4 5 trl0 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑝𝐴 ∧ ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ) ∧ ( 𝐹𝑇 ∧ ( 𝐹𝑝 ) = 𝑝 ) ) → ( 𝑅𝐹 ) = ( 0. ‘ 𝐾 ) )
19 13 14 15 16 18 syl112anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ) ∧ ( 𝑝𝐴 ∧ ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ) ∧ ( 𝐹𝑝 ) = 𝑝 ) → ( 𝑅𝐹 ) = ( 0. ‘ 𝐾 ) )
20 19 3expia ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ) ∧ ( 𝑝𝐴 ∧ ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ) ) → ( ( 𝐹𝑝 ) = 𝑝 → ( 𝑅𝐹 ) = ( 0. ‘ 𝐾 ) ) )
21 simplll ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ) ∧ ( 𝑝𝐴 ∧ ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ) ) → 𝐾 ∈ HL )
22 hlatl ( 𝐾 ∈ HL → 𝐾 ∈ AtLat )
23 17 2 atn0 ( ( 𝐾 ∈ AtLat ∧ ( 𝑅𝐹 ) ∈ 𝐴 ) → ( 𝑅𝐹 ) ≠ ( 0. ‘ 𝐾 ) )
24 23 ex ( 𝐾 ∈ AtLat → ( ( 𝑅𝐹 ) ∈ 𝐴 → ( 𝑅𝐹 ) ≠ ( 0. ‘ 𝐾 ) ) )
25 21 22 24 3syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ) ∧ ( 𝑝𝐴 ∧ ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ) ) → ( ( 𝑅𝐹 ) ∈ 𝐴 → ( 𝑅𝐹 ) ≠ ( 0. ‘ 𝐾 ) ) )
26 25 necon2bd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ) ∧ ( 𝑝𝐴 ∧ ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ) ) → ( ( 𝑅𝐹 ) = ( 0. ‘ 𝐾 ) → ¬ ( 𝑅𝐹 ) ∈ 𝐴 ) )
27 20 26 syld ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ) ∧ ( 𝑝𝐴 ∧ ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ) ) → ( ( 𝐹𝑝 ) = 𝑝 → ¬ ( 𝑅𝐹 ) ∈ 𝐴 ) )
28 12 27 sylbid ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ) ∧ ( 𝑝𝐴 ∧ ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ) ) → ( 𝐹 = ( I ↾ 𝐵 ) → ¬ ( 𝑅𝐹 ) ∈ 𝐴 ) )
29 10 28 rexlimddv ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ) → ( 𝐹 = ( I ↾ 𝐵 ) → ¬ ( 𝑅𝐹 ) ∈ 𝐴 ) )
30 29 necon2ad ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ) → ( ( 𝑅𝐹 ) ∈ 𝐴𝐹 ≠ ( I ↾ 𝐵 ) ) )
31 7 30 impbid ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ) → ( 𝐹 ≠ ( I ↾ 𝐵 ) ↔ ( 𝑅𝐹 ) ∈ 𝐴 ) )