Metamath Proof Explorer


Theorem trlco

Description: The trace of a composition of translations is less than or equal to the join of their traces. Part of proof of Lemma G of Crawley p. 116, second paragraph on p. 117. (Contributed by NM, 2-Jun-2013)

Ref Expression
Hypotheses trlco.l = ( le ‘ 𝐾 )
trlco.j = ( join ‘ 𝐾 )
trlco.h 𝐻 = ( LHyp ‘ 𝐾 )
trlco.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
trlco.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
Assertion trlco ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐺𝑇 ) → ( 𝑅 ‘ ( 𝐹𝐺 ) ) ( ( 𝑅𝐹 ) ( 𝑅𝐺 ) ) )

Proof

Step Hyp Ref Expression
1 trlco.l = ( le ‘ 𝐾 )
2 trlco.j = ( join ‘ 𝐾 )
3 trlco.h 𝐻 = ( LHyp ‘ 𝐾 )
4 trlco.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
5 trlco.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
6 eqid ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 )
7 1 6 3 lhpexnle ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ∃ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ¬ 𝑝 𝑊 )
8 7 3ad2ant1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐺𝑇 ) → ∃ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ¬ 𝑝 𝑊 )
9 simpl1 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ¬ 𝑝 𝑊 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
10 simpl2 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ¬ 𝑝 𝑊 ) ) → 𝐹𝑇 )
11 simpl3 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ¬ 𝑝 𝑊 ) ) → 𝐺𝑇 )
12 simpr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ¬ 𝑝 𝑊 ) ) → ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ¬ 𝑝 𝑊 ) )
13 eqid ( meet ‘ 𝐾 ) = ( meet ‘ 𝐾 )
14 1 2 3 4 5 13 6 trlcolem ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ¬ 𝑝 𝑊 ) ) → ( 𝑅 ‘ ( 𝐹𝐺 ) ) ( ( 𝑅𝐹 ) ( 𝑅𝐺 ) ) )
15 9 10 11 12 14 syl121anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ¬ 𝑝 𝑊 ) ) → ( 𝑅 ‘ ( 𝐹𝐺 ) ) ( ( 𝑅𝐹 ) ( 𝑅𝐺 ) ) )
16 8 15 rexlimddv ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐺𝑇 ) → ( 𝑅 ‘ ( 𝐹𝐺 ) ) ( ( 𝑅𝐹 ) ( 𝑅𝐺 ) ) )