Step |
Hyp |
Ref |
Expression |
1 |
|
trlco.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
trlco.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
trlco.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
4 |
|
trlco.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
trlco.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
eqid |
⊢ ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 ) |
7 |
1 6 3
|
lhpexnle |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ∃ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ¬ 𝑝 ≤ 𝑊 ) |
8 |
7
|
3ad2ant1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) → ∃ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ¬ 𝑝 ≤ 𝑊 ) |
9 |
|
simpl1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ¬ 𝑝 ≤ 𝑊 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
10 |
|
simpl2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ¬ 𝑝 ≤ 𝑊 ) ) → 𝐹 ∈ 𝑇 ) |
11 |
|
simpl3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ¬ 𝑝 ≤ 𝑊 ) ) → 𝐺 ∈ 𝑇 ) |
12 |
|
simpr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ¬ 𝑝 ≤ 𝑊 ) ) → ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ¬ 𝑝 ≤ 𝑊 ) ) |
13 |
|
eqid |
⊢ ( meet ‘ 𝐾 ) = ( meet ‘ 𝐾 ) |
14 |
1 2 3 4 5 13 6
|
trlcolem |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ¬ 𝑝 ≤ 𝑊 ) ) → ( 𝑅 ‘ ( 𝐹 ∘ 𝐺 ) ) ≤ ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ 𝐺 ) ) ) |
15 |
9 10 11 12 14
|
syl121anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ¬ 𝑝 ≤ 𝑊 ) ) → ( 𝑅 ‘ ( 𝐹 ∘ 𝐺 ) ) ≤ ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ 𝐺 ) ) ) |
16 |
8 15
|
rexlimddv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) → ( 𝑅 ‘ ( 𝐹 ∘ 𝐺 ) ) ≤ ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ 𝐺 ) ) ) |