Step |
Hyp |
Ref |
Expression |
1 |
|
trlco.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
trlco.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
trlco.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
4 |
|
trlco.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
trlco.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
trlcolem.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
7 |
|
trlcolem.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
8 |
|
simp1l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → 𝐾 ∈ HL ) |
9 |
8
|
hllatd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → 𝐾 ∈ Lat ) |
10 |
|
simp3l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → 𝑃 ∈ 𝐴 ) |
11 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
12 |
11 7
|
atbase |
⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
13 |
10 12
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
14 |
|
simp1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
15 |
|
simp2r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → 𝐺 ∈ 𝑇 ) |
16 |
1 7 3 4
|
ltrnat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑃 ) ∈ 𝐴 ) |
17 |
14 15 10 16
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝐺 ‘ 𝑃 ) ∈ 𝐴 ) |
18 |
11 7
|
atbase |
⊢ ( ( 𝐺 ‘ 𝑃 ) ∈ 𝐴 → ( 𝐺 ‘ 𝑃 ) ∈ ( Base ‘ 𝐾 ) ) |
19 |
17 18
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝐺 ‘ 𝑃 ) ∈ ( Base ‘ 𝐾 ) ) |
20 |
11 1 2
|
latlej1 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝐺 ‘ 𝑃 ) ∈ ( Base ‘ 𝐾 ) ) → 𝑃 ≤ ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ) |
21 |
9 13 19 20
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → 𝑃 ≤ ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ) |
22 |
11 2 7
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ ( 𝐺 ‘ 𝑃 ) ∈ 𝐴 ) → ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∈ ( Base ‘ 𝐾 ) ) |
23 |
8 10 17 22
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∈ ( Base ‘ 𝐾 ) ) |
24 |
|
simp2l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → 𝐹 ∈ 𝑇 ) |
25 |
11 3 4
|
ltrncl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝐺 ‘ 𝑃 ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∈ ( Base ‘ 𝐾 ) ) |
26 |
14 24 19 25
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∈ ( Base ‘ 𝐾 ) ) |
27 |
11 1 2
|
latjlej1 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∈ ( Base ‘ 𝐾 ) ) ) → ( 𝑃 ≤ ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) → ( 𝑃 ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ≤ ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ) ) |
28 |
9 13 23 26 27
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝑃 ≤ ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) → ( 𝑃 ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ≤ ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ) ) |
29 |
21 28
|
mpd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝑃 ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ≤ ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ) |
30 |
11 2
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝑃 ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ∈ ( Base ‘ 𝐾 ) ) |
31 |
9 13 26 30
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝑃 ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ∈ ( Base ‘ 𝐾 ) ) |
32 |
11 2
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ∈ ( Base ‘ 𝐾 ) ) |
33 |
9 23 26 32
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ∈ ( Base ‘ 𝐾 ) ) |
34 |
|
simp1r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → 𝑊 ∈ 𝐻 ) |
35 |
11 3
|
lhpbase |
⊢ ( 𝑊 ∈ 𝐻 → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
36 |
34 35
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
37 |
11 1 6
|
latmlem1 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( 𝑃 ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝑃 ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ≤ ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) → ( ( 𝑃 ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ∧ 𝑊 ) ≤ ( ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ∧ 𝑊 ) ) ) |
38 |
9 31 33 36 37
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( 𝑃 ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ≤ ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) → ( ( 𝑃 ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ∧ 𝑊 ) ≤ ( ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ∧ 𝑊 ) ) ) |
39 |
29 38
|
mpd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( 𝑃 ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ∧ 𝑊 ) ≤ ( ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ∧ 𝑊 ) ) |
40 |
3 4
|
ltrnco |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) → ( 𝐹 ∘ 𝐺 ) ∈ 𝑇 ) |
41 |
14 24 15 40
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝐹 ∘ 𝐺 ) ∈ 𝑇 ) |
42 |
1 2 6 7 3 4 5
|
trlval2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∘ 𝐺 ) ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝑅 ‘ ( 𝐹 ∘ 𝐺 ) ) = ( ( 𝑃 ∨ ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑃 ) ) ∧ 𝑊 ) ) |
43 |
41 42
|
syld3an2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝑅 ‘ ( 𝐹 ∘ 𝐺 ) ) = ( ( 𝑃 ∨ ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑃 ) ) ∧ 𝑊 ) ) |
44 |
1 7 3 4
|
ltrncoval |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑃 ∈ 𝐴 ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑃 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) |
45 |
44
|
3adant3r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑃 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) |
46 |
45
|
oveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝑃 ∨ ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑃 ) ) = ( 𝑃 ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ) |
47 |
46
|
oveq1d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( 𝑃 ∨ ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑃 ) ) ∧ 𝑊 ) = ( ( 𝑃 ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ∧ 𝑊 ) ) |
48 |
43 47
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝑅 ‘ ( 𝐹 ∘ 𝐺 ) ) = ( ( 𝑃 ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ∧ 𝑊 ) ) |
49 |
1 7 3 4
|
ltrnel |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐺 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( 𝐺 ‘ 𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐺 ‘ 𝑃 ) ≤ 𝑊 ) ) |
50 |
15 49
|
syld3an2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( 𝐺 ‘ 𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐺 ‘ 𝑃 ) ≤ 𝑊 ) ) |
51 |
1 2 6 7 3 4 5
|
trlval2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝐺 ‘ 𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐺 ‘ 𝑃 ) ≤ 𝑊 ) ) → ( 𝑅 ‘ 𝐹 ) = ( ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ∧ 𝑊 ) ) |
52 |
14 24 50 51
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝑅 ‘ 𝐹 ) = ( ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ∧ 𝑊 ) ) |
53 |
1 2 6 7 3 4 5
|
trlval2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐺 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝑅 ‘ 𝐺 ) = ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∧ 𝑊 ) ) |
54 |
15 53
|
syld3an2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝑅 ‘ 𝐺 ) = ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∧ 𝑊 ) ) |
55 |
52 54
|
oveq12d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ 𝐺 ) ) = ( ( ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ∧ 𝑊 ) ∨ ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∧ 𝑊 ) ) ) |
56 |
1 7 3 4
|
ltrnat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝐺 ‘ 𝑃 ) ∈ 𝐴 ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∈ 𝐴 ) |
57 |
14 24 17 56
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∈ 𝐴 ) |
58 |
11 2 7
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝐺 ‘ 𝑃 ) ∈ 𝐴 ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∈ 𝐴 ) → ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ∈ ( Base ‘ 𝐾 ) ) |
59 |
8 17 57 58
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ∈ ( Base ‘ 𝐾 ) ) |
60 |
11 6
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) → ( ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ∧ 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) |
61 |
9 59 36 60
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ∧ 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) |
62 |
11 6
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∧ 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) |
63 |
9 23 36 62
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∧ 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) |
64 |
11 2
|
latjcom |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ∧ 𝑊 ) ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∧ 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ∧ 𝑊 ) ∨ ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∧ 𝑊 ) ) = ( ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∧ 𝑊 ) ∨ ( ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ∧ 𝑊 ) ) ) |
65 |
9 61 63 64
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ∧ 𝑊 ) ∨ ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∧ 𝑊 ) ) = ( ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∧ 𝑊 ) ∨ ( ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ∧ 𝑊 ) ) ) |
66 |
11 2
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝐺 ‘ 𝑃 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ∈ ( Base ‘ 𝐾 ) ) |
67 |
9 19 26 66
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ∈ ( Base ‘ 𝐾 ) ) |
68 |
11 1 6
|
latmle2 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∧ 𝑊 ) ≤ 𝑊 ) |
69 |
9 23 36 68
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∧ 𝑊 ) ≤ 𝑊 ) |
70 |
11 1 2 6 3
|
lhpmod6i1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∧ 𝑊 ) ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ∈ ( Base ‘ 𝐾 ) ) ∧ ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∧ 𝑊 ) ≤ 𝑊 ) → ( ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∧ 𝑊 ) ∨ ( ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ∧ 𝑊 ) ) = ( ( ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∧ 𝑊 ) ∨ ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ) ∧ 𝑊 ) ) |
71 |
14 63 67 69 70
|
syl121anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∧ 𝑊 ) ∨ ( ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ∧ 𝑊 ) ) = ( ( ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∧ 𝑊 ) ∨ ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ) ∧ 𝑊 ) ) |
72 |
11 2
|
latjass |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∧ 𝑊 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝐺 ‘ 𝑃 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∈ ( Base ‘ 𝐾 ) ) ) → ( ( ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∧ 𝑊 ) ∨ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) = ( ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∧ 𝑊 ) ∨ ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ) ) |
73 |
9 63 19 26 72
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∧ 𝑊 ) ∨ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) = ( ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∧ 𝑊 ) ∨ ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ) ) |
74 |
11 1 2
|
latlej2 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝐺 ‘ 𝑃 ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝐺 ‘ 𝑃 ) ≤ ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ) |
75 |
9 13 19 74
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝐺 ‘ 𝑃 ) ≤ ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ) |
76 |
11 1 2 6 3
|
lhpmod2i2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝐺 ‘ 𝑃 ) ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝐺 ‘ 𝑃 ) ≤ ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ) → ( ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∧ 𝑊 ) ∨ ( 𝐺 ‘ 𝑃 ) ) = ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∧ ( 𝑊 ∨ ( 𝐺 ‘ 𝑃 ) ) ) ) |
77 |
14 23 19 75 76
|
syl121anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∧ 𝑊 ) ∨ ( 𝐺 ‘ 𝑃 ) ) = ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∧ ( 𝑊 ∨ ( 𝐺 ‘ 𝑃 ) ) ) ) |
78 |
|
eqid |
⊢ ( 1. ‘ 𝐾 ) = ( 1. ‘ 𝐾 ) |
79 |
1 2 78 7 3
|
lhpjat1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝐺 ‘ 𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐺 ‘ 𝑃 ) ≤ 𝑊 ) ) → ( 𝑊 ∨ ( 𝐺 ‘ 𝑃 ) ) = ( 1. ‘ 𝐾 ) ) |
80 |
14 50 79
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝑊 ∨ ( 𝐺 ‘ 𝑃 ) ) = ( 1. ‘ 𝐾 ) ) |
81 |
80
|
oveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∧ ( 𝑊 ∨ ( 𝐺 ‘ 𝑃 ) ) ) = ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∧ ( 1. ‘ 𝐾 ) ) ) |
82 |
|
hlol |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OL ) |
83 |
8 82
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → 𝐾 ∈ OL ) |
84 |
11 6 78
|
olm11 |
⊢ ( ( 𝐾 ∈ OL ∧ ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∧ ( 1. ‘ 𝐾 ) ) = ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ) |
85 |
83 23 84
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∧ ( 1. ‘ 𝐾 ) ) = ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ) |
86 |
77 81 85
|
3eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∧ 𝑊 ) ∨ ( 𝐺 ‘ 𝑃 ) ) = ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ) |
87 |
86
|
oveq1d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∧ 𝑊 ) ∨ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) = ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ) |
88 |
73 87
|
eqtr3d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∧ 𝑊 ) ∨ ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ) = ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ) |
89 |
88
|
oveq1d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∧ 𝑊 ) ∨ ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ) ∧ 𝑊 ) = ( ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ∧ 𝑊 ) ) |
90 |
71 89
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∧ 𝑊 ) ∨ ( ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ∧ 𝑊 ) ) = ( ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ∧ 𝑊 ) ) |
91 |
55 65 90
|
3eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ 𝐺 ) ) = ( ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ∧ 𝑊 ) ) |
92 |
39 48 91
|
3brtr4d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝑅 ‘ ( 𝐹 ∘ 𝐺 ) ) ≤ ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ 𝐺 ) ) ) |