Metamath Proof Explorer


Theorem 2atjlej

Description: Two atoms are different if their join majorizes the join of two different atoms. (Contributed by NM, 4-Jun-2013)

Ref Expression
Hypotheses ps1.l ˙ = K
ps1.j ˙ = join K
ps1.a A = Atoms K
Assertion 2atjlej K HL P A Q A P Q R A S A P ˙ Q ˙ R ˙ S R S

Proof

Step Hyp Ref Expression
1 ps1.l ˙ = K
2 ps1.j ˙ = join K
3 ps1.a A = Atoms K
4 simp33 K HL P A Q A P Q R A S A P ˙ Q ˙ R ˙ S P ˙ Q ˙ R ˙ S
5 simp1 K HL P A Q A P Q R A S A P ˙ Q ˙ R ˙ S K HL
6 simp21 K HL P A Q A P Q R A S A P ˙ Q ˙ R ˙ S P A
7 simp22 K HL P A Q A P Q R A S A P ˙ Q ˙ R ˙ S Q A
8 simp23 K HL P A Q A P Q R A S A P ˙ Q ˙ R ˙ S P Q
9 simp31 K HL P A Q A P Q R A S A P ˙ Q ˙ R ˙ S R A
10 simp32 K HL P A Q A P Q R A S A P ˙ Q ˙ R ˙ S S A
11 1 2 3 ps-1 K HL P A Q A P Q R A S A P ˙ Q ˙ R ˙ S P ˙ Q = R ˙ S
12 5 6 7 8 9 10 11 syl132anc K HL P A Q A P Q R A S A P ˙ Q ˙ R ˙ S P ˙ Q ˙ R ˙ S P ˙ Q = R ˙ S
13 4 12 mpbid K HL P A Q A P Q R A S A P ˙ Q ˙ R ˙ S P ˙ Q = R ˙ S
14 2 3 lnnat K HL P A Q A P Q ¬ P ˙ Q A
15 5 6 7 14 syl3anc K HL P A Q A P Q R A S A P ˙ Q ˙ R ˙ S P Q ¬ P ˙ Q A
16 8 15 mpbid K HL P A Q A P Q R A S A P ˙ Q ˙ R ˙ S ¬ P ˙ Q A
17 13 16 eqneltrrd K HL P A Q A P Q R A S A P ˙ Q ˙ R ˙ S ¬ R ˙ S A
18 2 3 lnnat K HL R A S A R S ¬ R ˙ S A
19 5 9 10 18 syl3anc K HL P A Q A P Q R A S A P ˙ Q ˙ R ˙ S R S ¬ R ˙ S A
20 17 19 mpbird K HL P A Q A P Q R A S A P ˙ Q ˙ R ˙ S R S