| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ps1.l |
|
| 2 |
|
ps1.j |
|
| 3 |
|
ps1.a |
|
| 4 |
|
oveq1 |
|
| 5 |
4
|
breq2d |
|
| 6 |
4
|
eqeq2d |
|
| 7 |
5 6
|
imbi12d |
|
| 8 |
7
|
eqcoms |
|
| 9 |
|
simp3 |
|
| 10 |
|
simp1 |
|
| 11 |
|
simp21 |
|
| 12 |
|
simp3l |
|
| 13 |
2 3
|
hlatjcom |
|
| 14 |
10 11 12 13
|
syl3anc |
|
| 15 |
14
|
3ad2ant1 |
|
| 16 |
|
hllat |
|
| 17 |
16
|
3ad2ant1 |
|
| 18 |
|
eqid |
|
| 19 |
18 3
|
atbase |
|
| 20 |
11 19
|
syl |
|
| 21 |
|
simp22 |
|
| 22 |
18 3
|
atbase |
|
| 23 |
21 22
|
syl |
|
| 24 |
|
simp3r |
|
| 25 |
18 2 3
|
hlatjcl |
|
| 26 |
10 12 24 25
|
syl3anc |
|
| 27 |
18 1 2
|
latjle12 |
|
| 28 |
17 20 23 26 27
|
syl13anc |
|
| 29 |
|
simpl |
|
| 30 |
28 29
|
biimtrrdi |
|
| 31 |
30
|
adantr |
|
| 32 |
|
simpl1 |
|
| 33 |
|
simpl21 |
|
| 34 |
|
simpl3r |
|
| 35 |
|
simpl3l |
|
| 36 |
|
simpr |
|
| 37 |
1 2 3
|
hlatexchb1 |
|
| 38 |
32 33 34 35 36 37
|
syl131anc |
|
| 39 |
31 38
|
sylibd |
|
| 40 |
39
|
3impia |
|
| 41 |
15 40
|
eqtrd |
|
| 42 |
9 41
|
breqtrrd |
|
| 43 |
42
|
3expia |
|
| 44 |
18 2 3
|
hlatjcl |
|
| 45 |
10 11 12 44
|
syl3anc |
|
| 46 |
18 1 2
|
latjle12 |
|
| 47 |
17 20 23 45 46
|
syl13anc |
|
| 48 |
|
simpr |
|
| 49 |
|
simp23 |
|
| 50 |
49
|
necomd |
|
| 51 |
1 2 3
|
hlatexchb1 |
|
| 52 |
10 21 12 11 50 51
|
syl131anc |
|
| 53 |
48 52
|
imbitrid |
|
| 54 |
47 53
|
sylbird |
|
| 55 |
54
|
adantr |
|
| 56 |
43 55
|
syld |
|
| 57 |
56
|
3impia |
|
| 58 |
57 41
|
eqtrd |
|
| 59 |
58
|
3expia |
|
| 60 |
18 2 3
|
hlatjcl |
|
| 61 |
10 11 24 60
|
syl3anc |
|
| 62 |
18 1 2
|
latjle12 |
|
| 63 |
17 20 23 61 62
|
syl13anc |
|
| 64 |
|
simpr |
|
| 65 |
63 64
|
biimtrrdi |
|
| 66 |
1 2 3
|
hlatexchb1 |
|
| 67 |
10 21 24 11 50 66
|
syl131anc |
|
| 68 |
65 67
|
sylibd |
|
| 69 |
8 59 68
|
pm2.61ne |
|
| 70 |
18 2 3
|
hlatjcl |
|
| 71 |
10 11 21 70
|
syl3anc |
|
| 72 |
18 1
|
latref |
|
| 73 |
17 71 72
|
syl2anc |
|
| 74 |
|
breq2 |
|
| 75 |
73 74
|
syl5ibcom |
|
| 76 |
69 75
|
impbid |
|