Metamath Proof Explorer


Theorem ps-2

Description: Lattice analogue for the projective geometry axiom, "if a line intersects two sides of a triangle at different points then it also intersects the third side." Projective space condition PS2 in MaedaMaeda p. 68 and part of Theorem 16.4 in MaedaMaeda p. 69. (Contributed by NM, 1-Dec-2011)

Ref Expression
Hypotheses ps1.l ˙ = K
ps1.j ˙ = join K
ps1.a A = Atoms K
Assertion ps-2 K HL P A Q A R A S A T A ¬ P ˙ Q ˙ R S T S ˙ P ˙ Q T ˙ Q ˙ R u A u ˙ P ˙ R u ˙ S ˙ T

Proof

Step Hyp Ref Expression
1 ps1.l ˙ = K
2 ps1.j ˙ = join K
3 ps1.a A = Atoms K
4 simpl21 K HL P A Q A R A S A T A S = P P A
5 simp1 K HL P A Q A R A S A T A K HL
6 simp21 K HL P A Q A R A S A T A P A
7 simp23 K HL P A Q A R A S A T A R A
8 1 2 3 hlatlej1 K HL P A R A P ˙ P ˙ R
9 5 6 7 8 syl3anc K HL P A Q A R A S A T A P ˙ P ˙ R
10 9 adantr K HL P A Q A R A S A T A S = P P ˙ P ˙ R
11 simp3r K HL P A Q A R A S A T A T A
12 1 2 3 hlatlej1 K HL P A T A P ˙ P ˙ T
13 5 6 11 12 syl3anc K HL P A Q A R A S A T A P ˙ P ˙ T
14 oveq1 S = P S ˙ T = P ˙ T
15 14 breq2d S = P P ˙ S ˙ T P ˙ P ˙ T
16 13 15 syl5ibrcom K HL P A Q A R A S A T A S = P P ˙ S ˙ T
17 16 imp K HL P A Q A R A S A T A S = P P ˙ S ˙ T
18 breq1 u = P u ˙ P ˙ R P ˙ P ˙ R
19 breq1 u = P u ˙ S ˙ T P ˙ S ˙ T
20 18 19 anbi12d u = P u ˙ P ˙ R u ˙ S ˙ T P ˙ P ˙ R P ˙ S ˙ T
21 20 rspcev P A P ˙ P ˙ R P ˙ S ˙ T u A u ˙ P ˙ R u ˙ S ˙ T
22 4 10 17 21 syl12anc K HL P A Q A R A S A T A S = P u A u ˙ P ˙ R u ˙ S ˙ T
23 22 a1d K HL P A Q A R A S A T A S = P ¬ P ˙ Q ˙ R S T S ˙ P ˙ Q T ˙ Q ˙ R u A u ˙ P ˙ R u ˙ S ˙ T
24 hlop K HL K OP
25 24 3ad2ant1 K HL P A Q A R A S A T A K OP
26 eqid Base K = Base K
27 eqid 0. K = 0. K
28 26 27 op0cl K OP 0. K Base K
29 25 28 syl K HL P A Q A R A S A T A 0. K Base K
30 26 3 atbase P A P Base K
31 6 30 syl K HL P A Q A R A S A T A P Base K
32 eqid K = K
33 27 32 3 atcvr0 K HL P A 0. K K P
34 5 6 33 syl2anc K HL P A Q A R A S A T A 0. K K P
35 eqid < K = < K
36 26 35 32 cvrlt K HL 0. K Base K P Base K 0. K K P 0. K < K P
37 5 29 31 34 36 syl31anc K HL P A Q A R A S A T A 0. K < K P
38 hlpos K HL K Poset
39 38 3ad2ant1 K HL P A Q A R A S A T A K Poset
40 hllat K HL K Lat
41 40 3ad2ant1 K HL P A Q A R A S A T A K Lat
42 26 3 atbase R A R Base K
43 7 42 syl K HL P A Q A R A S A T A R Base K
44 26 2 latjcl K Lat P Base K R Base K P ˙ R Base K
45 41 31 43 44 syl3anc K HL P A Q A R A S A T A P ˙ R Base K
46 26 1 35 pltletr K Poset 0. K Base K P Base K P ˙ R Base K 0. K < K P P ˙ P ˙ R 0. K < K P ˙ R
47 39 29 31 45 46 syl13anc K HL P A Q A R A S A T A 0. K < K P P ˙ P ˙ R 0. K < K P ˙ R
48 37 9 47 mp2and K HL P A Q A R A S A T A 0. K < K P ˙ R
49 35 pltne K HL 0. K Base K P ˙ R Base K 0. K < K P ˙ R 0. K P ˙ R
50 5 29 45 49 syl3anc K HL P A Q A R A S A T A 0. K < K P ˙ R 0. K P ˙ R
51 48 50 mpd K HL P A Q A R A S A T A 0. K P ˙ R
52 51 necomd K HL P A Q A R A S A T A P ˙ R 0. K
53 52 adantr K HL P A Q A R A S A T A S P S ˙ P ˙ Q T ˙ Q ˙ R P ˙ R 0. K
54 hlatl K HL K AtLat
55 54 3ad2ant1 K HL P A Q A R A S A T A K AtLat
56 simp3l K HL P A Q A R A S A T A S A
57 1 3 atncmp K AtLat S A P A ¬ S ˙ P S P
58 55 56 6 57 syl3anc K HL P A Q A R A S A T A ¬ S ˙ P S P
59 simp22 K HL P A Q A R A S A T A Q A
60 26 1 2 3 hlexch1 K HL S A Q A P Base K ¬ S ˙ P S ˙ P ˙ Q Q ˙ P ˙ S
61 60 3expia K HL S A Q A P Base K ¬ S ˙ P S ˙ P ˙ Q Q ˙ P ˙ S
62 5 56 59 31 61 syl13anc K HL P A Q A R A S A T A ¬ S ˙ P S ˙ P ˙ Q Q ˙ P ˙ S
63 58 62 sylbird K HL P A Q A R A S A T A S P S ˙ P ˙ Q Q ˙ P ˙ S
64 63 imp32 K HL P A Q A R A S A T A S P S ˙ P ˙ Q Q ˙ P ˙ S
65 26 3 atbase Q A Q Base K
66 59 65 syl K HL P A Q A R A S A T A Q Base K
67 26 3 atbase S A S Base K
68 56 67 syl K HL P A Q A R A S A T A S Base K
69 26 2 latjcl K Lat P Base K S Base K P ˙ S Base K
70 41 31 68 69 syl3anc K HL P A Q A R A S A T A P ˙ S Base K
71 26 1 2 latjlej1 K Lat Q Base K P ˙ S Base K R Base K Q ˙ P ˙ S Q ˙ R ˙ P ˙ S ˙ R
72 41 66 70 43 71 syl13anc K HL P A Q A R A S A T A Q ˙ P ˙ S Q ˙ R ˙ P ˙ S ˙ R
73 72 adantr K HL P A Q A R A S A T A S P S ˙ P ˙ Q Q ˙ P ˙ S Q ˙ R ˙ P ˙ S ˙ R
74 64 73 mpd K HL P A Q A R A S A T A S P S ˙ P ˙ Q Q ˙ R ˙ P ˙ S ˙ R
75 74 adantrrr K HL P A Q A R A S A T A S P S ˙ P ˙ Q T ˙ Q ˙ R Q ˙ R ˙ P ˙ S ˙ R
76 26 3 atbase T A T Base K
77 11 76 syl K HL P A Q A R A S A T A T Base K
78 26 2 latjcl K Lat Q Base K R Base K Q ˙ R Base K
79 41 66 43 78 syl3anc K HL P A Q A R A S A T A Q ˙ R Base K
80 26 2 latjcl K Lat P ˙ S Base K R Base K P ˙ S ˙ R Base K
81 41 70 43 80 syl3anc K HL P A Q A R A S A T A P ˙ S ˙ R Base K
82 26 1 lattr K Lat T Base K Q ˙ R Base K P ˙ S ˙ R Base K T ˙ Q ˙ R Q ˙ R ˙ P ˙ S ˙ R T ˙ P ˙ S ˙ R
83 41 77 79 81 82 syl13anc K HL P A Q A R A S A T A T ˙ Q ˙ R Q ˙ R ˙ P ˙ S ˙ R T ˙ P ˙ S ˙ R
84 83 expdimp K HL P A Q A R A S A T A T ˙ Q ˙ R Q ˙ R ˙ P ˙ S ˙ R T ˙ P ˙ S ˙ R
85 84 adantrl K HL P A Q A R A S A T A S ˙ P ˙ Q T ˙ Q ˙ R Q ˙ R ˙ P ˙ S ˙ R T ˙ P ˙ S ˙ R
86 85 adantrl K HL P A Q A R A S A T A S P S ˙ P ˙ Q T ˙ Q ˙ R Q ˙ R ˙ P ˙ S ˙ R T ˙ P ˙ S ˙ R
87 75 86 mpd K HL P A Q A R A S A T A S P S ˙ P ˙ Q T ˙ Q ˙ R T ˙ P ˙ S ˙ R
88 2 3 hlatj32 K HL P A S A R A P ˙ S ˙ R = P ˙ R ˙ S
89 5 6 56 7 88 syl13anc K HL P A Q A R A S A T A P ˙ S ˙ R = P ˙ R ˙ S
90 89 breq2d K HL P A Q A R A S A T A T ˙ P ˙ S ˙ R T ˙ P ˙ R ˙ S
91 90 adantr K HL P A Q A R A S A T A S P S ˙ P ˙ Q T ˙ Q ˙ R T ˙ P ˙ S ˙ R T ˙ P ˙ R ˙ S
92 87 91 mpbid K HL P A Q A R A S A T A S P S ˙ P ˙ Q T ˙ Q ˙ R T ˙ P ˙ R ˙ S
93 53 92 jca K HL P A Q A R A S A T A S P S ˙ P ˙ Q T ˙ Q ˙ R P ˙ R 0. K T ˙ P ˙ R ˙ S
94 93 adantrrl K HL P A Q A R A S A T A S P ¬ P ˙ Q ˙ R S ˙ P ˙ Q T ˙ Q ˙ R P ˙ R 0. K T ˙ P ˙ R ˙ S
95 94 ex K HL P A Q A R A S A T A S P ¬ P ˙ Q ˙ R S ˙ P ˙ Q T ˙ Q ˙ R P ˙ R 0. K T ˙ P ˙ R ˙ S
96 26 1 2 27 3 cvrat4 K HL P ˙ R Base K T A S A P ˙ R 0. K T ˙ P ˙ R ˙ S u A u ˙ P ˙ R T ˙ S ˙ u
97 5 45 11 56 96 syl13anc K HL P A Q A R A S A T A P ˙ R 0. K T ˙ P ˙ R ˙ S u A u ˙ P ˙ R T ˙ S ˙ u
98 95 97 syld K HL P A Q A R A S A T A S P ¬ P ˙ Q ˙ R S ˙ P ˙ Q T ˙ Q ˙ R u A u ˙ P ˙ R T ˙ S ˙ u
99 98 impl K HL P A Q A R A S A T A S P ¬ P ˙ Q ˙ R S ˙ P ˙ Q T ˙ Q ˙ R u A u ˙ P ˙ R T ˙ S ˙ u
100 99 adantrlr K HL P A Q A R A S A T A S P ¬ P ˙ Q ˙ R S T S ˙ P ˙ Q T ˙ Q ˙ R u A u ˙ P ˙ R T ˙ S ˙ u
101 1 3 atncmp K AtLat T A S A ¬ T ˙ S T S
102 55 11 56 101 syl3anc K HL P A Q A R A S A T A ¬ T ˙ S T S
103 necom T S S T
104 102 103 bitrdi K HL P A Q A R A S A T A ¬ T ˙ S S T
105 104 adantr K HL P A Q A R A S A T A u A ¬ T ˙ S S T
106 simpl1 K HL P A Q A R A S A T A u A K HL
107 simpl3r K HL P A Q A R A S A T A u A T A
108 simpr K HL P A Q A R A S A T A u A u A
109 68 adantr K HL P A Q A R A S A T A u A S Base K
110 26 1 2 3 hlexch1 K HL T A u A S Base K ¬ T ˙ S T ˙ S ˙ u u ˙ S ˙ T
111 110 3expia K HL T A u A S Base K ¬ T ˙ S T ˙ S ˙ u u ˙ S ˙ T
112 106 107 108 109 111 syl13anc K HL P A Q A R A S A T A u A ¬ T ˙ S T ˙ S ˙ u u ˙ S ˙ T
113 105 112 sylbird K HL P A Q A R A S A T A u A S T T ˙ S ˙ u u ˙ S ˙ T
114 113 imp K HL P A Q A R A S A T A u A S T T ˙ S ˙ u u ˙ S ˙ T
115 114 an32s K HL P A Q A R A S A T A S T u A T ˙ S ˙ u u ˙ S ˙ T
116 115 anim2d K HL P A Q A R A S A T A S T u A u ˙ P ˙ R T ˙ S ˙ u u ˙ P ˙ R u ˙ S ˙ T
117 116 reximdva K HL P A Q A R A S A T A S T u A u ˙ P ˙ R T ˙ S ˙ u u A u ˙ P ˙ R u ˙ S ˙ T
118 117 ad2ant2rl K HL P A Q A R A S A T A S P ¬ P ˙ Q ˙ R S T u A u ˙ P ˙ R T ˙ S ˙ u u A u ˙ P ˙ R u ˙ S ˙ T
119 118 adantrr K HL P A Q A R A S A T A S P ¬ P ˙ Q ˙ R S T S ˙ P ˙ Q T ˙ Q ˙ R u A u ˙ P ˙ R T ˙ S ˙ u u A u ˙ P ˙ R u ˙ S ˙ T
120 100 119 mpd K HL P A Q A R A S A T A S P ¬ P ˙ Q ˙ R S T S ˙ P ˙ Q T ˙ Q ˙ R u A u ˙ P ˙ R u ˙ S ˙ T
121 120 ex K HL P A Q A R A S A T A S P ¬ P ˙ Q ˙ R S T S ˙ P ˙ Q T ˙ Q ˙ R u A u ˙ P ˙ R u ˙ S ˙ T
122 23 121 pm2.61dane K HL P A Q A R A S A T A ¬ P ˙ Q ˙ R S T S ˙ P ˙ Q T ˙ Q ˙ R u A u ˙ P ˙ R u ˙ S ˙ T
123 122 imp K HL P A Q A R A S A T A ¬ P ˙ Q ˙ R S T S ˙ P ˙ Q T ˙ Q ˙ R u A u ˙ P ˙ R u ˙ S ˙ T