Step |
Hyp |
Ref |
Expression |
1 |
|
ps1.l |
|- .<_ = ( le ` K ) |
2 |
|
ps1.j |
|- .\/ = ( join ` K ) |
3 |
|
ps1.a |
|- A = ( Atoms ` K ) |
4 |
|
simpl21 |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ S = P ) -> P e. A ) |
5 |
|
simp1 |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> K e. HL ) |
6 |
|
simp21 |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> P e. A ) |
7 |
|
simp23 |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> R e. A ) |
8 |
1 2 3
|
hlatlej1 |
|- ( ( K e. HL /\ P e. A /\ R e. A ) -> P .<_ ( P .\/ R ) ) |
9 |
5 6 7 8
|
syl3anc |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> P .<_ ( P .\/ R ) ) |
10 |
9
|
adantr |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ S = P ) -> P .<_ ( P .\/ R ) ) |
11 |
|
simp3r |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> T e. A ) |
12 |
1 2 3
|
hlatlej1 |
|- ( ( K e. HL /\ P e. A /\ T e. A ) -> P .<_ ( P .\/ T ) ) |
13 |
5 6 11 12
|
syl3anc |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> P .<_ ( P .\/ T ) ) |
14 |
|
oveq1 |
|- ( S = P -> ( S .\/ T ) = ( P .\/ T ) ) |
15 |
14
|
breq2d |
|- ( S = P -> ( P .<_ ( S .\/ T ) <-> P .<_ ( P .\/ T ) ) ) |
16 |
13 15
|
syl5ibrcom |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( S = P -> P .<_ ( S .\/ T ) ) ) |
17 |
16
|
imp |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ S = P ) -> P .<_ ( S .\/ T ) ) |
18 |
|
breq1 |
|- ( u = P -> ( u .<_ ( P .\/ R ) <-> P .<_ ( P .\/ R ) ) ) |
19 |
|
breq1 |
|- ( u = P -> ( u .<_ ( S .\/ T ) <-> P .<_ ( S .\/ T ) ) ) |
20 |
18 19
|
anbi12d |
|- ( u = P -> ( ( u .<_ ( P .\/ R ) /\ u .<_ ( S .\/ T ) ) <-> ( P .<_ ( P .\/ R ) /\ P .<_ ( S .\/ T ) ) ) ) |
21 |
20
|
rspcev |
|- ( ( P e. A /\ ( P .<_ ( P .\/ R ) /\ P .<_ ( S .\/ T ) ) ) -> E. u e. A ( u .<_ ( P .\/ R ) /\ u .<_ ( S .\/ T ) ) ) |
22 |
4 10 17 21
|
syl12anc |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ S = P ) -> E. u e. A ( u .<_ ( P .\/ R ) /\ u .<_ ( S .\/ T ) ) ) |
23 |
22
|
a1d |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ S = P ) -> ( ( ( -. P .<_ ( Q .\/ R ) /\ S =/= T ) /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) -> E. u e. A ( u .<_ ( P .\/ R ) /\ u .<_ ( S .\/ T ) ) ) ) |
24 |
|
hlop |
|- ( K e. HL -> K e. OP ) |
25 |
24
|
3ad2ant1 |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> K e. OP ) |
26 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
27 |
|
eqid |
|- ( 0. ` K ) = ( 0. ` K ) |
28 |
26 27
|
op0cl |
|- ( K e. OP -> ( 0. ` K ) e. ( Base ` K ) ) |
29 |
25 28
|
syl |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( 0. ` K ) e. ( Base ` K ) ) |
30 |
26 3
|
atbase |
|- ( P e. A -> P e. ( Base ` K ) ) |
31 |
6 30
|
syl |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> P e. ( Base ` K ) ) |
32 |
|
eqid |
|- ( |
33 |
27 32 3
|
atcvr0 |
|- ( ( K e. HL /\ P e. A ) -> ( 0. ` K ) ( |
34 |
5 6 33
|
syl2anc |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( 0. ` K ) ( |
35 |
|
eqid |
|- ( lt ` K ) = ( lt ` K ) |
36 |
26 35 32
|
cvrlt |
|- ( ( ( K e. HL /\ ( 0. ` K ) e. ( Base ` K ) /\ P e. ( Base ` K ) ) /\ ( 0. ` K ) ( ( 0. ` K ) ( lt ` K ) P ) |
37 |
5 29 31 34 36
|
syl31anc |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( 0. ` K ) ( lt ` K ) P ) |
38 |
|
hlpos |
|- ( K e. HL -> K e. Poset ) |
39 |
38
|
3ad2ant1 |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> K e. Poset ) |
40 |
|
hllat |
|- ( K e. HL -> K e. Lat ) |
41 |
40
|
3ad2ant1 |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> K e. Lat ) |
42 |
26 3
|
atbase |
|- ( R e. A -> R e. ( Base ` K ) ) |
43 |
7 42
|
syl |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> R e. ( Base ` K ) ) |
44 |
26 2
|
latjcl |
|- ( ( K e. Lat /\ P e. ( Base ` K ) /\ R e. ( Base ` K ) ) -> ( P .\/ R ) e. ( Base ` K ) ) |
45 |
41 31 43 44
|
syl3anc |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( P .\/ R ) e. ( Base ` K ) ) |
46 |
26 1 35
|
pltletr |
|- ( ( K e. Poset /\ ( ( 0. ` K ) e. ( Base ` K ) /\ P e. ( Base ` K ) /\ ( P .\/ R ) e. ( Base ` K ) ) ) -> ( ( ( 0. ` K ) ( lt ` K ) P /\ P .<_ ( P .\/ R ) ) -> ( 0. ` K ) ( lt ` K ) ( P .\/ R ) ) ) |
47 |
39 29 31 45 46
|
syl13anc |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( ( ( 0. ` K ) ( lt ` K ) P /\ P .<_ ( P .\/ R ) ) -> ( 0. ` K ) ( lt ` K ) ( P .\/ R ) ) ) |
48 |
37 9 47
|
mp2and |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( 0. ` K ) ( lt ` K ) ( P .\/ R ) ) |
49 |
35
|
pltne |
|- ( ( K e. HL /\ ( 0. ` K ) e. ( Base ` K ) /\ ( P .\/ R ) e. ( Base ` K ) ) -> ( ( 0. ` K ) ( lt ` K ) ( P .\/ R ) -> ( 0. ` K ) =/= ( P .\/ R ) ) ) |
50 |
5 29 45 49
|
syl3anc |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( ( 0. ` K ) ( lt ` K ) ( P .\/ R ) -> ( 0. ` K ) =/= ( P .\/ R ) ) ) |
51 |
48 50
|
mpd |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( 0. ` K ) =/= ( P .\/ R ) ) |
52 |
51
|
necomd |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( P .\/ R ) =/= ( 0. ` K ) ) |
53 |
52
|
adantr |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ ( S =/= P /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> ( P .\/ R ) =/= ( 0. ` K ) ) |
54 |
|
hlatl |
|- ( K e. HL -> K e. AtLat ) |
55 |
54
|
3ad2ant1 |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> K e. AtLat ) |
56 |
|
simp3l |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> S e. A ) |
57 |
1 3
|
atncmp |
|- ( ( K e. AtLat /\ S e. A /\ P e. A ) -> ( -. S .<_ P <-> S =/= P ) ) |
58 |
55 56 6 57
|
syl3anc |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( -. S .<_ P <-> S =/= P ) ) |
59 |
|
simp22 |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> Q e. A ) |
60 |
26 1 2 3
|
hlexch1 |
|- ( ( K e. HL /\ ( S e. A /\ Q e. A /\ P e. ( Base ` K ) ) /\ -. S .<_ P ) -> ( S .<_ ( P .\/ Q ) -> Q .<_ ( P .\/ S ) ) ) |
61 |
60
|
3expia |
|- ( ( K e. HL /\ ( S e. A /\ Q e. A /\ P e. ( Base ` K ) ) ) -> ( -. S .<_ P -> ( S .<_ ( P .\/ Q ) -> Q .<_ ( P .\/ S ) ) ) ) |
62 |
5 56 59 31 61
|
syl13anc |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( -. S .<_ P -> ( S .<_ ( P .\/ Q ) -> Q .<_ ( P .\/ S ) ) ) ) |
63 |
58 62
|
sylbird |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( S =/= P -> ( S .<_ ( P .\/ Q ) -> Q .<_ ( P .\/ S ) ) ) ) |
64 |
63
|
imp32 |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ ( S =/= P /\ S .<_ ( P .\/ Q ) ) ) -> Q .<_ ( P .\/ S ) ) |
65 |
26 3
|
atbase |
|- ( Q e. A -> Q e. ( Base ` K ) ) |
66 |
59 65
|
syl |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> Q e. ( Base ` K ) ) |
67 |
26 3
|
atbase |
|- ( S e. A -> S e. ( Base ` K ) ) |
68 |
56 67
|
syl |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> S e. ( Base ` K ) ) |
69 |
26 2
|
latjcl |
|- ( ( K e. Lat /\ P e. ( Base ` K ) /\ S e. ( Base ` K ) ) -> ( P .\/ S ) e. ( Base ` K ) ) |
70 |
41 31 68 69
|
syl3anc |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( P .\/ S ) e. ( Base ` K ) ) |
71 |
26 1 2
|
latjlej1 |
|- ( ( K e. Lat /\ ( Q e. ( Base ` K ) /\ ( P .\/ S ) e. ( Base ` K ) /\ R e. ( Base ` K ) ) ) -> ( Q .<_ ( P .\/ S ) -> ( Q .\/ R ) .<_ ( ( P .\/ S ) .\/ R ) ) ) |
72 |
41 66 70 43 71
|
syl13anc |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( Q .<_ ( P .\/ S ) -> ( Q .\/ R ) .<_ ( ( P .\/ S ) .\/ R ) ) ) |
73 |
72
|
adantr |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ ( S =/= P /\ S .<_ ( P .\/ Q ) ) ) -> ( Q .<_ ( P .\/ S ) -> ( Q .\/ R ) .<_ ( ( P .\/ S ) .\/ R ) ) ) |
74 |
64 73
|
mpd |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ ( S =/= P /\ S .<_ ( P .\/ Q ) ) ) -> ( Q .\/ R ) .<_ ( ( P .\/ S ) .\/ R ) ) |
75 |
74
|
adantrrr |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ ( S =/= P /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> ( Q .\/ R ) .<_ ( ( P .\/ S ) .\/ R ) ) |
76 |
26 3
|
atbase |
|- ( T e. A -> T e. ( Base ` K ) ) |
77 |
11 76
|
syl |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> T e. ( Base ` K ) ) |
78 |
26 2
|
latjcl |
|- ( ( K e. Lat /\ Q e. ( Base ` K ) /\ R e. ( Base ` K ) ) -> ( Q .\/ R ) e. ( Base ` K ) ) |
79 |
41 66 43 78
|
syl3anc |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( Q .\/ R ) e. ( Base ` K ) ) |
80 |
26 2
|
latjcl |
|- ( ( K e. Lat /\ ( P .\/ S ) e. ( Base ` K ) /\ R e. ( Base ` K ) ) -> ( ( P .\/ S ) .\/ R ) e. ( Base ` K ) ) |
81 |
41 70 43 80
|
syl3anc |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( ( P .\/ S ) .\/ R ) e. ( Base ` K ) ) |
82 |
26 1
|
lattr |
|- ( ( K e. Lat /\ ( T e. ( Base ` K ) /\ ( Q .\/ R ) e. ( Base ` K ) /\ ( ( P .\/ S ) .\/ R ) e. ( Base ` K ) ) ) -> ( ( T .<_ ( Q .\/ R ) /\ ( Q .\/ R ) .<_ ( ( P .\/ S ) .\/ R ) ) -> T .<_ ( ( P .\/ S ) .\/ R ) ) ) |
83 |
41 77 79 81 82
|
syl13anc |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( ( T .<_ ( Q .\/ R ) /\ ( Q .\/ R ) .<_ ( ( P .\/ S ) .\/ R ) ) -> T .<_ ( ( P .\/ S ) .\/ R ) ) ) |
84 |
83
|
expdimp |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ T .<_ ( Q .\/ R ) ) -> ( ( Q .\/ R ) .<_ ( ( P .\/ S ) .\/ R ) -> T .<_ ( ( P .\/ S ) .\/ R ) ) ) |
85 |
84
|
adantrl |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) -> ( ( Q .\/ R ) .<_ ( ( P .\/ S ) .\/ R ) -> T .<_ ( ( P .\/ S ) .\/ R ) ) ) |
86 |
85
|
adantrl |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ ( S =/= P /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> ( ( Q .\/ R ) .<_ ( ( P .\/ S ) .\/ R ) -> T .<_ ( ( P .\/ S ) .\/ R ) ) ) |
87 |
75 86
|
mpd |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ ( S =/= P /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> T .<_ ( ( P .\/ S ) .\/ R ) ) |
88 |
2 3
|
hlatj32 |
|- ( ( K e. HL /\ ( P e. A /\ S e. A /\ R e. A ) ) -> ( ( P .\/ S ) .\/ R ) = ( ( P .\/ R ) .\/ S ) ) |
89 |
5 6 56 7 88
|
syl13anc |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( ( P .\/ S ) .\/ R ) = ( ( P .\/ R ) .\/ S ) ) |
90 |
89
|
breq2d |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( T .<_ ( ( P .\/ S ) .\/ R ) <-> T .<_ ( ( P .\/ R ) .\/ S ) ) ) |
91 |
90
|
adantr |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ ( S =/= P /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> ( T .<_ ( ( P .\/ S ) .\/ R ) <-> T .<_ ( ( P .\/ R ) .\/ S ) ) ) |
92 |
87 91
|
mpbid |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ ( S =/= P /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> T .<_ ( ( P .\/ R ) .\/ S ) ) |
93 |
53 92
|
jca |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ ( S =/= P /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> ( ( P .\/ R ) =/= ( 0. ` K ) /\ T .<_ ( ( P .\/ R ) .\/ S ) ) ) |
94 |
93
|
adantrrl |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ ( S =/= P /\ ( -. P .<_ ( Q .\/ R ) /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) ) -> ( ( P .\/ R ) =/= ( 0. ` K ) /\ T .<_ ( ( P .\/ R ) .\/ S ) ) ) |
95 |
94
|
ex |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( ( S =/= P /\ ( -. P .<_ ( Q .\/ R ) /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> ( ( P .\/ R ) =/= ( 0. ` K ) /\ T .<_ ( ( P .\/ R ) .\/ S ) ) ) ) |
96 |
26 1 2 27 3
|
cvrat4 |
|- ( ( K e. HL /\ ( ( P .\/ R ) e. ( Base ` K ) /\ T e. A /\ S e. A ) ) -> ( ( ( P .\/ R ) =/= ( 0. ` K ) /\ T .<_ ( ( P .\/ R ) .\/ S ) ) -> E. u e. A ( u .<_ ( P .\/ R ) /\ T .<_ ( S .\/ u ) ) ) ) |
97 |
5 45 11 56 96
|
syl13anc |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( ( ( P .\/ R ) =/= ( 0. ` K ) /\ T .<_ ( ( P .\/ R ) .\/ S ) ) -> E. u e. A ( u .<_ ( P .\/ R ) /\ T .<_ ( S .\/ u ) ) ) ) |
98 |
95 97
|
syld |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( ( S =/= P /\ ( -. P .<_ ( Q .\/ R ) /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> E. u e. A ( u .<_ ( P .\/ R ) /\ T .<_ ( S .\/ u ) ) ) ) |
99 |
98
|
impl |
|- ( ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ S =/= P ) /\ ( -. P .<_ ( Q .\/ R ) /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> E. u e. A ( u .<_ ( P .\/ R ) /\ T .<_ ( S .\/ u ) ) ) |
100 |
99
|
adantrlr |
|- ( ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ S =/= P ) /\ ( ( -. P .<_ ( Q .\/ R ) /\ S =/= T ) /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> E. u e. A ( u .<_ ( P .\/ R ) /\ T .<_ ( S .\/ u ) ) ) |
101 |
1 3
|
atncmp |
|- ( ( K e. AtLat /\ T e. A /\ S e. A ) -> ( -. T .<_ S <-> T =/= S ) ) |
102 |
55 11 56 101
|
syl3anc |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( -. T .<_ S <-> T =/= S ) ) |
103 |
|
necom |
|- ( T =/= S <-> S =/= T ) |
104 |
102 103
|
bitrdi |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( -. T .<_ S <-> S =/= T ) ) |
105 |
104
|
adantr |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ u e. A ) -> ( -. T .<_ S <-> S =/= T ) ) |
106 |
|
simpl1 |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ u e. A ) -> K e. HL ) |
107 |
|
simpl3r |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ u e. A ) -> T e. A ) |
108 |
|
simpr |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ u e. A ) -> u e. A ) |
109 |
68
|
adantr |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ u e. A ) -> S e. ( Base ` K ) ) |
110 |
26 1 2 3
|
hlexch1 |
|- ( ( K e. HL /\ ( T e. A /\ u e. A /\ S e. ( Base ` K ) ) /\ -. T .<_ S ) -> ( T .<_ ( S .\/ u ) -> u .<_ ( S .\/ T ) ) ) |
111 |
110
|
3expia |
|- ( ( K e. HL /\ ( T e. A /\ u e. A /\ S e. ( Base ` K ) ) ) -> ( -. T .<_ S -> ( T .<_ ( S .\/ u ) -> u .<_ ( S .\/ T ) ) ) ) |
112 |
106 107 108 109 111
|
syl13anc |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ u e. A ) -> ( -. T .<_ S -> ( T .<_ ( S .\/ u ) -> u .<_ ( S .\/ T ) ) ) ) |
113 |
105 112
|
sylbird |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ u e. A ) -> ( S =/= T -> ( T .<_ ( S .\/ u ) -> u .<_ ( S .\/ T ) ) ) ) |
114 |
113
|
imp |
|- ( ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ u e. A ) /\ S =/= T ) -> ( T .<_ ( S .\/ u ) -> u .<_ ( S .\/ T ) ) ) |
115 |
114
|
an32s |
|- ( ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ S =/= T ) /\ u e. A ) -> ( T .<_ ( S .\/ u ) -> u .<_ ( S .\/ T ) ) ) |
116 |
115
|
anim2d |
|- ( ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ S =/= T ) /\ u e. A ) -> ( ( u .<_ ( P .\/ R ) /\ T .<_ ( S .\/ u ) ) -> ( u .<_ ( P .\/ R ) /\ u .<_ ( S .\/ T ) ) ) ) |
117 |
116
|
reximdva |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ S =/= T ) -> ( E. u e. A ( u .<_ ( P .\/ R ) /\ T .<_ ( S .\/ u ) ) -> E. u e. A ( u .<_ ( P .\/ R ) /\ u .<_ ( S .\/ T ) ) ) ) |
118 |
117
|
ad2ant2rl |
|- ( ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ S =/= P ) /\ ( -. P .<_ ( Q .\/ R ) /\ S =/= T ) ) -> ( E. u e. A ( u .<_ ( P .\/ R ) /\ T .<_ ( S .\/ u ) ) -> E. u e. A ( u .<_ ( P .\/ R ) /\ u .<_ ( S .\/ T ) ) ) ) |
119 |
118
|
adantrr |
|- ( ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ S =/= P ) /\ ( ( -. P .<_ ( Q .\/ R ) /\ S =/= T ) /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> ( E. u e. A ( u .<_ ( P .\/ R ) /\ T .<_ ( S .\/ u ) ) -> E. u e. A ( u .<_ ( P .\/ R ) /\ u .<_ ( S .\/ T ) ) ) ) |
120 |
100 119
|
mpd |
|- ( ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ S =/= P ) /\ ( ( -. P .<_ ( Q .\/ R ) /\ S =/= T ) /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> E. u e. A ( u .<_ ( P .\/ R ) /\ u .<_ ( S .\/ T ) ) ) |
121 |
120
|
ex |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ S =/= P ) -> ( ( ( -. P .<_ ( Q .\/ R ) /\ S =/= T ) /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) -> E. u e. A ( u .<_ ( P .\/ R ) /\ u .<_ ( S .\/ T ) ) ) ) |
122 |
23 121
|
pm2.61dane |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( ( ( -. P .<_ ( Q .\/ R ) /\ S =/= T ) /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) -> E. u e. A ( u .<_ ( P .\/ R ) /\ u .<_ ( S .\/ T ) ) ) ) |
123 |
122
|
imp |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ ( ( -. P .<_ ( Q .\/ R ) /\ S =/= T ) /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> E. u e. A ( u .<_ ( P .\/ R ) /\ u .<_ ( S .\/ T ) ) ) |