| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ps1.l |
|- .<_ = ( le ` K ) |
| 2 |
|
ps1.j |
|- .\/ = ( join ` K ) |
| 3 |
|
ps1.a |
|- A = ( Atoms ` K ) |
| 4 |
|
simpl21 |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ S = P ) -> P e. A ) |
| 5 |
|
simp1 |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> K e. HL ) |
| 6 |
|
simp21 |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> P e. A ) |
| 7 |
|
simp23 |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> R e. A ) |
| 8 |
1 2 3
|
hlatlej1 |
|- ( ( K e. HL /\ P e. A /\ R e. A ) -> P .<_ ( P .\/ R ) ) |
| 9 |
5 6 7 8
|
syl3anc |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> P .<_ ( P .\/ R ) ) |
| 10 |
9
|
adantr |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ S = P ) -> P .<_ ( P .\/ R ) ) |
| 11 |
|
simp3r |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> T e. A ) |
| 12 |
1 2 3
|
hlatlej1 |
|- ( ( K e. HL /\ P e. A /\ T e. A ) -> P .<_ ( P .\/ T ) ) |
| 13 |
5 6 11 12
|
syl3anc |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> P .<_ ( P .\/ T ) ) |
| 14 |
|
oveq1 |
|- ( S = P -> ( S .\/ T ) = ( P .\/ T ) ) |
| 15 |
14
|
breq2d |
|- ( S = P -> ( P .<_ ( S .\/ T ) <-> P .<_ ( P .\/ T ) ) ) |
| 16 |
13 15
|
syl5ibrcom |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( S = P -> P .<_ ( S .\/ T ) ) ) |
| 17 |
16
|
imp |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ S = P ) -> P .<_ ( S .\/ T ) ) |
| 18 |
|
breq1 |
|- ( u = P -> ( u .<_ ( P .\/ R ) <-> P .<_ ( P .\/ R ) ) ) |
| 19 |
|
breq1 |
|- ( u = P -> ( u .<_ ( S .\/ T ) <-> P .<_ ( S .\/ T ) ) ) |
| 20 |
18 19
|
anbi12d |
|- ( u = P -> ( ( u .<_ ( P .\/ R ) /\ u .<_ ( S .\/ T ) ) <-> ( P .<_ ( P .\/ R ) /\ P .<_ ( S .\/ T ) ) ) ) |
| 21 |
20
|
rspcev |
|- ( ( P e. A /\ ( P .<_ ( P .\/ R ) /\ P .<_ ( S .\/ T ) ) ) -> E. u e. A ( u .<_ ( P .\/ R ) /\ u .<_ ( S .\/ T ) ) ) |
| 22 |
4 10 17 21
|
syl12anc |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ S = P ) -> E. u e. A ( u .<_ ( P .\/ R ) /\ u .<_ ( S .\/ T ) ) ) |
| 23 |
22
|
a1d |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ S = P ) -> ( ( ( -. P .<_ ( Q .\/ R ) /\ S =/= T ) /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) -> E. u e. A ( u .<_ ( P .\/ R ) /\ u .<_ ( S .\/ T ) ) ) ) |
| 24 |
|
hlop |
|- ( K e. HL -> K e. OP ) |
| 25 |
24
|
3ad2ant1 |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> K e. OP ) |
| 26 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 27 |
|
eqid |
|- ( 0. ` K ) = ( 0. ` K ) |
| 28 |
26 27
|
op0cl |
|- ( K e. OP -> ( 0. ` K ) e. ( Base ` K ) ) |
| 29 |
25 28
|
syl |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( 0. ` K ) e. ( Base ` K ) ) |
| 30 |
26 3
|
atbase |
|- ( P e. A -> P e. ( Base ` K ) ) |
| 31 |
6 30
|
syl |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> P e. ( Base ` K ) ) |
| 32 |
|
eqid |
|- ( |
| 33 |
27 32 3
|
atcvr0 |
|- ( ( K e. HL /\ P e. A ) -> ( 0. ` K ) ( |
| 34 |
5 6 33
|
syl2anc |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( 0. ` K ) ( |
| 35 |
|
eqid |
|- ( lt ` K ) = ( lt ` K ) |
| 36 |
26 35 32
|
cvrlt |
|- ( ( ( K e. HL /\ ( 0. ` K ) e. ( Base ` K ) /\ P e. ( Base ` K ) ) /\ ( 0. ` K ) ( ( 0. ` K ) ( lt ` K ) P ) |
| 37 |
5 29 31 34 36
|
syl31anc |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( 0. ` K ) ( lt ` K ) P ) |
| 38 |
|
hlpos |
|- ( K e. HL -> K e. Poset ) |
| 39 |
38
|
3ad2ant1 |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> K e. Poset ) |
| 40 |
|
hllat |
|- ( K e. HL -> K e. Lat ) |
| 41 |
40
|
3ad2ant1 |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> K e. Lat ) |
| 42 |
26 3
|
atbase |
|- ( R e. A -> R e. ( Base ` K ) ) |
| 43 |
7 42
|
syl |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> R e. ( Base ` K ) ) |
| 44 |
26 2
|
latjcl |
|- ( ( K e. Lat /\ P e. ( Base ` K ) /\ R e. ( Base ` K ) ) -> ( P .\/ R ) e. ( Base ` K ) ) |
| 45 |
41 31 43 44
|
syl3anc |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( P .\/ R ) e. ( Base ` K ) ) |
| 46 |
26 1 35
|
pltletr |
|- ( ( K e. Poset /\ ( ( 0. ` K ) e. ( Base ` K ) /\ P e. ( Base ` K ) /\ ( P .\/ R ) e. ( Base ` K ) ) ) -> ( ( ( 0. ` K ) ( lt ` K ) P /\ P .<_ ( P .\/ R ) ) -> ( 0. ` K ) ( lt ` K ) ( P .\/ R ) ) ) |
| 47 |
39 29 31 45 46
|
syl13anc |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( ( ( 0. ` K ) ( lt ` K ) P /\ P .<_ ( P .\/ R ) ) -> ( 0. ` K ) ( lt ` K ) ( P .\/ R ) ) ) |
| 48 |
37 9 47
|
mp2and |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( 0. ` K ) ( lt ` K ) ( P .\/ R ) ) |
| 49 |
35
|
pltne |
|- ( ( K e. HL /\ ( 0. ` K ) e. ( Base ` K ) /\ ( P .\/ R ) e. ( Base ` K ) ) -> ( ( 0. ` K ) ( lt ` K ) ( P .\/ R ) -> ( 0. ` K ) =/= ( P .\/ R ) ) ) |
| 50 |
5 29 45 49
|
syl3anc |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( ( 0. ` K ) ( lt ` K ) ( P .\/ R ) -> ( 0. ` K ) =/= ( P .\/ R ) ) ) |
| 51 |
48 50
|
mpd |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( 0. ` K ) =/= ( P .\/ R ) ) |
| 52 |
51
|
necomd |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( P .\/ R ) =/= ( 0. ` K ) ) |
| 53 |
52
|
adantr |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ ( S =/= P /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> ( P .\/ R ) =/= ( 0. ` K ) ) |
| 54 |
|
hlatl |
|- ( K e. HL -> K e. AtLat ) |
| 55 |
54
|
3ad2ant1 |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> K e. AtLat ) |
| 56 |
|
simp3l |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> S e. A ) |
| 57 |
1 3
|
atncmp |
|- ( ( K e. AtLat /\ S e. A /\ P e. A ) -> ( -. S .<_ P <-> S =/= P ) ) |
| 58 |
55 56 6 57
|
syl3anc |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( -. S .<_ P <-> S =/= P ) ) |
| 59 |
|
simp22 |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> Q e. A ) |
| 60 |
26 1 2 3
|
hlexch1 |
|- ( ( K e. HL /\ ( S e. A /\ Q e. A /\ P e. ( Base ` K ) ) /\ -. S .<_ P ) -> ( S .<_ ( P .\/ Q ) -> Q .<_ ( P .\/ S ) ) ) |
| 61 |
60
|
3expia |
|- ( ( K e. HL /\ ( S e. A /\ Q e. A /\ P e. ( Base ` K ) ) ) -> ( -. S .<_ P -> ( S .<_ ( P .\/ Q ) -> Q .<_ ( P .\/ S ) ) ) ) |
| 62 |
5 56 59 31 61
|
syl13anc |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( -. S .<_ P -> ( S .<_ ( P .\/ Q ) -> Q .<_ ( P .\/ S ) ) ) ) |
| 63 |
58 62
|
sylbird |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( S =/= P -> ( S .<_ ( P .\/ Q ) -> Q .<_ ( P .\/ S ) ) ) ) |
| 64 |
63
|
imp32 |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ ( S =/= P /\ S .<_ ( P .\/ Q ) ) ) -> Q .<_ ( P .\/ S ) ) |
| 65 |
26 3
|
atbase |
|- ( Q e. A -> Q e. ( Base ` K ) ) |
| 66 |
59 65
|
syl |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> Q e. ( Base ` K ) ) |
| 67 |
26 3
|
atbase |
|- ( S e. A -> S e. ( Base ` K ) ) |
| 68 |
56 67
|
syl |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> S e. ( Base ` K ) ) |
| 69 |
26 2
|
latjcl |
|- ( ( K e. Lat /\ P e. ( Base ` K ) /\ S e. ( Base ` K ) ) -> ( P .\/ S ) e. ( Base ` K ) ) |
| 70 |
41 31 68 69
|
syl3anc |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( P .\/ S ) e. ( Base ` K ) ) |
| 71 |
26 1 2
|
latjlej1 |
|- ( ( K e. Lat /\ ( Q e. ( Base ` K ) /\ ( P .\/ S ) e. ( Base ` K ) /\ R e. ( Base ` K ) ) ) -> ( Q .<_ ( P .\/ S ) -> ( Q .\/ R ) .<_ ( ( P .\/ S ) .\/ R ) ) ) |
| 72 |
41 66 70 43 71
|
syl13anc |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( Q .<_ ( P .\/ S ) -> ( Q .\/ R ) .<_ ( ( P .\/ S ) .\/ R ) ) ) |
| 73 |
72
|
adantr |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ ( S =/= P /\ S .<_ ( P .\/ Q ) ) ) -> ( Q .<_ ( P .\/ S ) -> ( Q .\/ R ) .<_ ( ( P .\/ S ) .\/ R ) ) ) |
| 74 |
64 73
|
mpd |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ ( S =/= P /\ S .<_ ( P .\/ Q ) ) ) -> ( Q .\/ R ) .<_ ( ( P .\/ S ) .\/ R ) ) |
| 75 |
74
|
adantrrr |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ ( S =/= P /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> ( Q .\/ R ) .<_ ( ( P .\/ S ) .\/ R ) ) |
| 76 |
26 3
|
atbase |
|- ( T e. A -> T e. ( Base ` K ) ) |
| 77 |
11 76
|
syl |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> T e. ( Base ` K ) ) |
| 78 |
26 2
|
latjcl |
|- ( ( K e. Lat /\ Q e. ( Base ` K ) /\ R e. ( Base ` K ) ) -> ( Q .\/ R ) e. ( Base ` K ) ) |
| 79 |
41 66 43 78
|
syl3anc |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( Q .\/ R ) e. ( Base ` K ) ) |
| 80 |
26 2
|
latjcl |
|- ( ( K e. Lat /\ ( P .\/ S ) e. ( Base ` K ) /\ R e. ( Base ` K ) ) -> ( ( P .\/ S ) .\/ R ) e. ( Base ` K ) ) |
| 81 |
41 70 43 80
|
syl3anc |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( ( P .\/ S ) .\/ R ) e. ( Base ` K ) ) |
| 82 |
26 1
|
lattr |
|- ( ( K e. Lat /\ ( T e. ( Base ` K ) /\ ( Q .\/ R ) e. ( Base ` K ) /\ ( ( P .\/ S ) .\/ R ) e. ( Base ` K ) ) ) -> ( ( T .<_ ( Q .\/ R ) /\ ( Q .\/ R ) .<_ ( ( P .\/ S ) .\/ R ) ) -> T .<_ ( ( P .\/ S ) .\/ R ) ) ) |
| 83 |
41 77 79 81 82
|
syl13anc |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( ( T .<_ ( Q .\/ R ) /\ ( Q .\/ R ) .<_ ( ( P .\/ S ) .\/ R ) ) -> T .<_ ( ( P .\/ S ) .\/ R ) ) ) |
| 84 |
83
|
expdimp |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ T .<_ ( Q .\/ R ) ) -> ( ( Q .\/ R ) .<_ ( ( P .\/ S ) .\/ R ) -> T .<_ ( ( P .\/ S ) .\/ R ) ) ) |
| 85 |
84
|
adantrl |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) -> ( ( Q .\/ R ) .<_ ( ( P .\/ S ) .\/ R ) -> T .<_ ( ( P .\/ S ) .\/ R ) ) ) |
| 86 |
85
|
adantrl |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ ( S =/= P /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> ( ( Q .\/ R ) .<_ ( ( P .\/ S ) .\/ R ) -> T .<_ ( ( P .\/ S ) .\/ R ) ) ) |
| 87 |
75 86
|
mpd |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ ( S =/= P /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> T .<_ ( ( P .\/ S ) .\/ R ) ) |
| 88 |
2 3
|
hlatj32 |
|- ( ( K e. HL /\ ( P e. A /\ S e. A /\ R e. A ) ) -> ( ( P .\/ S ) .\/ R ) = ( ( P .\/ R ) .\/ S ) ) |
| 89 |
5 6 56 7 88
|
syl13anc |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( ( P .\/ S ) .\/ R ) = ( ( P .\/ R ) .\/ S ) ) |
| 90 |
89
|
breq2d |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( T .<_ ( ( P .\/ S ) .\/ R ) <-> T .<_ ( ( P .\/ R ) .\/ S ) ) ) |
| 91 |
90
|
adantr |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ ( S =/= P /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> ( T .<_ ( ( P .\/ S ) .\/ R ) <-> T .<_ ( ( P .\/ R ) .\/ S ) ) ) |
| 92 |
87 91
|
mpbid |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ ( S =/= P /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> T .<_ ( ( P .\/ R ) .\/ S ) ) |
| 93 |
53 92
|
jca |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ ( S =/= P /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> ( ( P .\/ R ) =/= ( 0. ` K ) /\ T .<_ ( ( P .\/ R ) .\/ S ) ) ) |
| 94 |
93
|
adantrrl |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ ( S =/= P /\ ( -. P .<_ ( Q .\/ R ) /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) ) -> ( ( P .\/ R ) =/= ( 0. ` K ) /\ T .<_ ( ( P .\/ R ) .\/ S ) ) ) |
| 95 |
94
|
ex |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( ( S =/= P /\ ( -. P .<_ ( Q .\/ R ) /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> ( ( P .\/ R ) =/= ( 0. ` K ) /\ T .<_ ( ( P .\/ R ) .\/ S ) ) ) ) |
| 96 |
26 1 2 27 3
|
cvrat4 |
|- ( ( K e. HL /\ ( ( P .\/ R ) e. ( Base ` K ) /\ T e. A /\ S e. A ) ) -> ( ( ( P .\/ R ) =/= ( 0. ` K ) /\ T .<_ ( ( P .\/ R ) .\/ S ) ) -> E. u e. A ( u .<_ ( P .\/ R ) /\ T .<_ ( S .\/ u ) ) ) ) |
| 97 |
5 45 11 56 96
|
syl13anc |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( ( ( P .\/ R ) =/= ( 0. ` K ) /\ T .<_ ( ( P .\/ R ) .\/ S ) ) -> E. u e. A ( u .<_ ( P .\/ R ) /\ T .<_ ( S .\/ u ) ) ) ) |
| 98 |
95 97
|
syld |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( ( S =/= P /\ ( -. P .<_ ( Q .\/ R ) /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> E. u e. A ( u .<_ ( P .\/ R ) /\ T .<_ ( S .\/ u ) ) ) ) |
| 99 |
98
|
impl |
|- ( ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ S =/= P ) /\ ( -. P .<_ ( Q .\/ R ) /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> E. u e. A ( u .<_ ( P .\/ R ) /\ T .<_ ( S .\/ u ) ) ) |
| 100 |
99
|
adantrlr |
|- ( ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ S =/= P ) /\ ( ( -. P .<_ ( Q .\/ R ) /\ S =/= T ) /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> E. u e. A ( u .<_ ( P .\/ R ) /\ T .<_ ( S .\/ u ) ) ) |
| 101 |
1 3
|
atncmp |
|- ( ( K e. AtLat /\ T e. A /\ S e. A ) -> ( -. T .<_ S <-> T =/= S ) ) |
| 102 |
55 11 56 101
|
syl3anc |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( -. T .<_ S <-> T =/= S ) ) |
| 103 |
|
necom |
|- ( T =/= S <-> S =/= T ) |
| 104 |
102 103
|
bitrdi |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( -. T .<_ S <-> S =/= T ) ) |
| 105 |
104
|
adantr |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ u e. A ) -> ( -. T .<_ S <-> S =/= T ) ) |
| 106 |
|
simpl1 |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ u e. A ) -> K e. HL ) |
| 107 |
|
simpl3r |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ u e. A ) -> T e. A ) |
| 108 |
|
simpr |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ u e. A ) -> u e. A ) |
| 109 |
68
|
adantr |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ u e. A ) -> S e. ( Base ` K ) ) |
| 110 |
26 1 2 3
|
hlexch1 |
|- ( ( K e. HL /\ ( T e. A /\ u e. A /\ S e. ( Base ` K ) ) /\ -. T .<_ S ) -> ( T .<_ ( S .\/ u ) -> u .<_ ( S .\/ T ) ) ) |
| 111 |
110
|
3expia |
|- ( ( K e. HL /\ ( T e. A /\ u e. A /\ S e. ( Base ` K ) ) ) -> ( -. T .<_ S -> ( T .<_ ( S .\/ u ) -> u .<_ ( S .\/ T ) ) ) ) |
| 112 |
106 107 108 109 111
|
syl13anc |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ u e. A ) -> ( -. T .<_ S -> ( T .<_ ( S .\/ u ) -> u .<_ ( S .\/ T ) ) ) ) |
| 113 |
105 112
|
sylbird |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ u e. A ) -> ( S =/= T -> ( T .<_ ( S .\/ u ) -> u .<_ ( S .\/ T ) ) ) ) |
| 114 |
113
|
imp |
|- ( ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ u e. A ) /\ S =/= T ) -> ( T .<_ ( S .\/ u ) -> u .<_ ( S .\/ T ) ) ) |
| 115 |
114
|
an32s |
|- ( ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ S =/= T ) /\ u e. A ) -> ( T .<_ ( S .\/ u ) -> u .<_ ( S .\/ T ) ) ) |
| 116 |
115
|
anim2d |
|- ( ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ S =/= T ) /\ u e. A ) -> ( ( u .<_ ( P .\/ R ) /\ T .<_ ( S .\/ u ) ) -> ( u .<_ ( P .\/ R ) /\ u .<_ ( S .\/ T ) ) ) ) |
| 117 |
116
|
reximdva |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ S =/= T ) -> ( E. u e. A ( u .<_ ( P .\/ R ) /\ T .<_ ( S .\/ u ) ) -> E. u e. A ( u .<_ ( P .\/ R ) /\ u .<_ ( S .\/ T ) ) ) ) |
| 118 |
117
|
ad2ant2rl |
|- ( ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ S =/= P ) /\ ( -. P .<_ ( Q .\/ R ) /\ S =/= T ) ) -> ( E. u e. A ( u .<_ ( P .\/ R ) /\ T .<_ ( S .\/ u ) ) -> E. u e. A ( u .<_ ( P .\/ R ) /\ u .<_ ( S .\/ T ) ) ) ) |
| 119 |
118
|
adantrr |
|- ( ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ S =/= P ) /\ ( ( -. P .<_ ( Q .\/ R ) /\ S =/= T ) /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> ( E. u e. A ( u .<_ ( P .\/ R ) /\ T .<_ ( S .\/ u ) ) -> E. u e. A ( u .<_ ( P .\/ R ) /\ u .<_ ( S .\/ T ) ) ) ) |
| 120 |
100 119
|
mpd |
|- ( ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ S =/= P ) /\ ( ( -. P .<_ ( Q .\/ R ) /\ S =/= T ) /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> E. u e. A ( u .<_ ( P .\/ R ) /\ u .<_ ( S .\/ T ) ) ) |
| 121 |
120
|
ex |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ S =/= P ) -> ( ( ( -. P .<_ ( Q .\/ R ) /\ S =/= T ) /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) -> E. u e. A ( u .<_ ( P .\/ R ) /\ u .<_ ( S .\/ T ) ) ) ) |
| 122 |
23 121
|
pm2.61dane |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( ( ( -. P .<_ ( Q .\/ R ) /\ S =/= T ) /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) -> E. u e. A ( u .<_ ( P .\/ R ) /\ u .<_ ( S .\/ T ) ) ) ) |
| 123 |
122
|
imp |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ ( ( -. P .<_ ( Q .\/ R ) /\ S =/= T ) /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> E. u e. A ( u .<_ ( P .\/ R ) /\ u .<_ ( S .\/ T ) ) ) |