| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cvrat4.b |
|- B = ( Base ` K ) |
| 2 |
|
cvrat4.l |
|- .<_ = ( le ` K ) |
| 3 |
|
cvrat4.j |
|- .\/ = ( join ` K ) |
| 4 |
|
cvrat4.z |
|- .0. = ( 0. ` K ) |
| 5 |
|
cvrat4.a |
|- A = ( Atoms ` K ) |
| 6 |
|
hlatl |
|- ( K e. HL -> K e. AtLat ) |
| 7 |
6
|
adantr |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> K e. AtLat ) |
| 8 |
|
simpr1 |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> X e. B ) |
| 9 |
1 2 4 5
|
atlex |
|- ( ( K e. AtLat /\ X e. B /\ X =/= .0. ) -> E. r e. A r .<_ X ) |
| 10 |
9
|
3exp |
|- ( K e. AtLat -> ( X e. B -> ( X =/= .0. -> E. r e. A r .<_ X ) ) ) |
| 11 |
7 8 10
|
sylc |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( X =/= .0. -> E. r e. A r .<_ X ) ) |
| 12 |
11
|
adantr |
|- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ P = Q ) -> ( X =/= .0. -> E. r e. A r .<_ X ) ) |
| 13 |
|
simpll |
|- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ r e. A ) -> K e. HL ) |
| 14 |
|
simplr3 |
|- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ r e. A ) -> Q e. A ) |
| 15 |
|
simpr |
|- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ r e. A ) -> r e. A ) |
| 16 |
2 3 5
|
hlatlej1 |
|- ( ( K e. HL /\ Q e. A /\ r e. A ) -> Q .<_ ( Q .\/ r ) ) |
| 17 |
13 14 15 16
|
syl3anc |
|- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ r e. A ) -> Q .<_ ( Q .\/ r ) ) |
| 18 |
|
breq1 |
|- ( P = Q -> ( P .<_ ( Q .\/ r ) <-> Q .<_ ( Q .\/ r ) ) ) |
| 19 |
17 18
|
imbitrrid |
|- ( P = Q -> ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ r e. A ) -> P .<_ ( Q .\/ r ) ) ) |
| 20 |
19
|
expd |
|- ( P = Q -> ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( r e. A -> P .<_ ( Q .\/ r ) ) ) ) |
| 21 |
20
|
impcom |
|- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ P = Q ) -> ( r e. A -> P .<_ ( Q .\/ r ) ) ) |
| 22 |
21
|
anim2d |
|- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ P = Q ) -> ( ( r .<_ X /\ r e. A ) -> ( r .<_ X /\ P .<_ ( Q .\/ r ) ) ) ) |
| 23 |
22
|
expcomd |
|- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ P = Q ) -> ( r e. A -> ( r .<_ X -> ( r .<_ X /\ P .<_ ( Q .\/ r ) ) ) ) ) |
| 24 |
23
|
reximdvai |
|- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ P = Q ) -> ( E. r e. A r .<_ X -> E. r e. A ( r .<_ X /\ P .<_ ( Q .\/ r ) ) ) ) |
| 25 |
12 24
|
syld |
|- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ P = Q ) -> ( X =/= .0. -> E. r e. A ( r .<_ X /\ P .<_ ( Q .\/ r ) ) ) ) |
| 26 |
25
|
ex |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( P = Q -> ( X =/= .0. -> E. r e. A ( r .<_ X /\ P .<_ ( Q .\/ r ) ) ) ) ) |
| 27 |
26
|
a1i |
|- ( P .<_ ( X .\/ Q ) -> ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( P = Q -> ( X =/= .0. -> E. r e. A ( r .<_ X /\ P .<_ ( Q .\/ r ) ) ) ) ) ) |
| 28 |
27
|
com4l |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( P = Q -> ( X =/= .0. -> ( P .<_ ( X .\/ Q ) -> E. r e. A ( r .<_ X /\ P .<_ ( Q .\/ r ) ) ) ) ) ) |
| 29 |
28
|
imp4a |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( P = Q -> ( ( X =/= .0. /\ P .<_ ( X .\/ Q ) ) -> E. r e. A ( r .<_ X /\ P .<_ ( Q .\/ r ) ) ) ) ) |
| 30 |
|
hllat |
|- ( K e. HL -> K e. Lat ) |
| 31 |
30
|
adantr |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> K e. Lat ) |
| 32 |
|
simpr3 |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> Q e. A ) |
| 33 |
1 5
|
atbase |
|- ( Q e. A -> Q e. B ) |
| 34 |
32 33
|
syl |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> Q e. B ) |
| 35 |
1 2 3
|
latleeqj2 |
|- ( ( K e. Lat /\ Q e. B /\ X e. B ) -> ( Q .<_ X <-> ( X .\/ Q ) = X ) ) |
| 36 |
31 34 8 35
|
syl3anc |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( Q .<_ X <-> ( X .\/ Q ) = X ) ) |
| 37 |
36
|
biimpa |
|- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ Q .<_ X ) -> ( X .\/ Q ) = X ) |
| 38 |
37
|
breq2d |
|- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ Q .<_ X ) -> ( P .<_ ( X .\/ Q ) <-> P .<_ X ) ) |
| 39 |
38
|
biimpa |
|- ( ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ Q .<_ X ) /\ P .<_ ( X .\/ Q ) ) -> P .<_ X ) |
| 40 |
39
|
expl |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( ( Q .<_ X /\ P .<_ ( X .\/ Q ) ) -> P .<_ X ) ) |
| 41 |
|
simpl |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> K e. HL ) |
| 42 |
|
simpr2 |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> P e. A ) |
| 43 |
2 3 5
|
hlatlej2 |
|- ( ( K e. HL /\ Q e. A /\ P e. A ) -> P .<_ ( Q .\/ P ) ) |
| 44 |
41 32 42 43
|
syl3anc |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> P .<_ ( Q .\/ P ) ) |
| 45 |
40 44
|
jctird |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( ( Q .<_ X /\ P .<_ ( X .\/ Q ) ) -> ( P .<_ X /\ P .<_ ( Q .\/ P ) ) ) ) |
| 46 |
45 42
|
jctild |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( ( Q .<_ X /\ P .<_ ( X .\/ Q ) ) -> ( P e. A /\ ( P .<_ X /\ P .<_ ( Q .\/ P ) ) ) ) ) |
| 47 |
46
|
impl |
|- ( ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ Q .<_ X ) /\ P .<_ ( X .\/ Q ) ) -> ( P e. A /\ ( P .<_ X /\ P .<_ ( Q .\/ P ) ) ) ) |
| 48 |
|
breq1 |
|- ( r = P -> ( r .<_ X <-> P .<_ X ) ) |
| 49 |
|
oveq2 |
|- ( r = P -> ( Q .\/ r ) = ( Q .\/ P ) ) |
| 50 |
49
|
breq2d |
|- ( r = P -> ( P .<_ ( Q .\/ r ) <-> P .<_ ( Q .\/ P ) ) ) |
| 51 |
48 50
|
anbi12d |
|- ( r = P -> ( ( r .<_ X /\ P .<_ ( Q .\/ r ) ) <-> ( P .<_ X /\ P .<_ ( Q .\/ P ) ) ) ) |
| 52 |
51
|
rspcev |
|- ( ( P e. A /\ ( P .<_ X /\ P .<_ ( Q .\/ P ) ) ) -> E. r e. A ( r .<_ X /\ P .<_ ( Q .\/ r ) ) ) |
| 53 |
47 52
|
syl |
|- ( ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ Q .<_ X ) /\ P .<_ ( X .\/ Q ) ) -> E. r e. A ( r .<_ X /\ P .<_ ( Q .\/ r ) ) ) |
| 54 |
53
|
adantrl |
|- ( ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ Q .<_ X ) /\ ( X =/= .0. /\ P .<_ ( X .\/ Q ) ) ) -> E. r e. A ( r .<_ X /\ P .<_ ( Q .\/ r ) ) ) |
| 55 |
54
|
exp31 |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( Q .<_ X -> ( ( X =/= .0. /\ P .<_ ( X .\/ Q ) ) -> E. r e. A ( r .<_ X /\ P .<_ ( Q .\/ r ) ) ) ) ) |
| 56 |
|
simpr |
|- ( ( X =/= .0. /\ P .<_ ( X .\/ Q ) ) -> P .<_ ( X .\/ Q ) ) |
| 57 |
|
ioran |
|- ( -. ( P = Q \/ Q .<_ X ) <-> ( -. P = Q /\ -. Q .<_ X ) ) |
| 58 |
|
df-ne |
|- ( P =/= Q <-> -. P = Q ) |
| 59 |
58
|
anbi1i |
|- ( ( P =/= Q /\ -. Q .<_ X ) <-> ( -. P = Q /\ -. Q .<_ X ) ) |
| 60 |
57 59
|
bitr4i |
|- ( -. ( P = Q \/ Q .<_ X ) <-> ( P =/= Q /\ -. Q .<_ X ) ) |
| 61 |
|
eqid |
|- ( meet ` K ) = ( meet ` K ) |
| 62 |
1 2 3 61 5
|
cvrat3 |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( ( P =/= Q /\ -. Q .<_ X /\ P .<_ ( X .\/ Q ) ) -> ( X ( meet ` K ) ( P .\/ Q ) ) e. A ) ) |
| 63 |
62
|
3expd |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( P =/= Q -> ( -. Q .<_ X -> ( P .<_ ( X .\/ Q ) -> ( X ( meet ` K ) ( P .\/ Q ) ) e. A ) ) ) ) |
| 64 |
63
|
imp4c |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( ( ( P =/= Q /\ -. Q .<_ X ) /\ P .<_ ( X .\/ Q ) ) -> ( X ( meet ` K ) ( P .\/ Q ) ) e. A ) ) |
| 65 |
1 5
|
atbase |
|- ( P e. A -> P e. B ) |
| 66 |
42 65
|
syl |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> P e. B ) |
| 67 |
1 3
|
latjcl |
|- ( ( K e. Lat /\ P e. B /\ Q e. B ) -> ( P .\/ Q ) e. B ) |
| 68 |
31 66 34 67
|
syl3anc |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( P .\/ Q ) e. B ) |
| 69 |
1 2 61
|
latmle1 |
|- ( ( K e. Lat /\ X e. B /\ ( P .\/ Q ) e. B ) -> ( X ( meet ` K ) ( P .\/ Q ) ) .<_ X ) |
| 70 |
31 8 68 69
|
syl3anc |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( X ( meet ` K ) ( P .\/ Q ) ) .<_ X ) |
| 71 |
70
|
adantr |
|- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ ( ( P =/= Q /\ -. Q .<_ X ) /\ P .<_ ( X .\/ Q ) ) ) -> ( X ( meet ` K ) ( P .\/ Q ) ) .<_ X ) |
| 72 |
|
simpll |
|- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ ( ( P =/= Q /\ -. Q .<_ X ) /\ P .<_ ( X .\/ Q ) ) ) -> K e. HL ) |
| 73 |
63
|
imp44 |
|- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ ( ( P =/= Q /\ -. Q .<_ X ) /\ P .<_ ( X .\/ Q ) ) ) -> ( X ( meet ` K ) ( P .\/ Q ) ) e. A ) |
| 74 |
|
simplr2 |
|- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ ( ( P =/= Q /\ -. Q .<_ X ) /\ P .<_ ( X .\/ Q ) ) ) -> P e. A ) |
| 75 |
34
|
adantr |
|- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ ( ( P =/= Q /\ -. Q .<_ X ) /\ P .<_ ( X .\/ Q ) ) ) -> Q e. B ) |
| 76 |
73 74 75
|
3jca |
|- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ ( ( P =/= Q /\ -. Q .<_ X ) /\ P .<_ ( X .\/ Q ) ) ) -> ( ( X ( meet ` K ) ( P .\/ Q ) ) e. A /\ P e. A /\ Q e. B ) ) |
| 77 |
72 76
|
jca |
|- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ ( ( P =/= Q /\ -. Q .<_ X ) /\ P .<_ ( X .\/ Q ) ) ) -> ( K e. HL /\ ( ( X ( meet ` K ) ( P .\/ Q ) ) e. A /\ P e. A /\ Q e. B ) ) ) |
| 78 |
1 2 61 4 5
|
atnle |
|- ( ( K e. AtLat /\ Q e. A /\ X e. B ) -> ( -. Q .<_ X <-> ( Q ( meet ` K ) X ) = .0. ) ) |
| 79 |
7 32 8 78
|
syl3anc |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( -. Q .<_ X <-> ( Q ( meet ` K ) X ) = .0. ) ) |
| 80 |
1 61
|
latmcom |
|- ( ( K e. Lat /\ Q e. B /\ X e. B ) -> ( Q ( meet ` K ) X ) = ( X ( meet ` K ) Q ) ) |
| 81 |
31 34 8 80
|
syl3anc |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( Q ( meet ` K ) X ) = ( X ( meet ` K ) Q ) ) |
| 82 |
81
|
eqeq1d |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( ( Q ( meet ` K ) X ) = .0. <-> ( X ( meet ` K ) Q ) = .0. ) ) |
| 83 |
79 82
|
bitrd |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( -. Q .<_ X <-> ( X ( meet ` K ) Q ) = .0. ) ) |
| 84 |
1 61
|
latmcl |
|- ( ( K e. Lat /\ X e. B /\ ( P .\/ Q ) e. B ) -> ( X ( meet ` K ) ( P .\/ Q ) ) e. B ) |
| 85 |
31 8 68 84
|
syl3anc |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( X ( meet ` K ) ( P .\/ Q ) ) e. B ) |
| 86 |
85 8 34
|
3jca |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( ( X ( meet ` K ) ( P .\/ Q ) ) e. B /\ X e. B /\ Q e. B ) ) |
| 87 |
31 86
|
jca |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( K e. Lat /\ ( ( X ( meet ` K ) ( P .\/ Q ) ) e. B /\ X e. B /\ Q e. B ) ) ) |
| 88 |
1 2 61
|
latmlem2 |
|- ( ( K e. Lat /\ ( ( X ( meet ` K ) ( P .\/ Q ) ) e. B /\ X e. B /\ Q e. B ) ) -> ( ( X ( meet ` K ) ( P .\/ Q ) ) .<_ X -> ( Q ( meet ` K ) ( X ( meet ` K ) ( P .\/ Q ) ) ) .<_ ( Q ( meet ` K ) X ) ) ) |
| 89 |
87 70 88
|
sylc |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( Q ( meet ` K ) ( X ( meet ` K ) ( P .\/ Q ) ) ) .<_ ( Q ( meet ` K ) X ) ) |
| 90 |
89 81
|
breqtrd |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( Q ( meet ` K ) ( X ( meet ` K ) ( P .\/ Q ) ) ) .<_ ( X ( meet ` K ) Q ) ) |
| 91 |
|
breq2 |
|- ( ( X ( meet ` K ) Q ) = .0. -> ( ( Q ( meet ` K ) ( X ( meet ` K ) ( P .\/ Q ) ) ) .<_ ( X ( meet ` K ) Q ) <-> ( Q ( meet ` K ) ( X ( meet ` K ) ( P .\/ Q ) ) ) .<_ .0. ) ) |
| 92 |
90 91
|
syl5ibcom |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( ( X ( meet ` K ) Q ) = .0. -> ( Q ( meet ` K ) ( X ( meet ` K ) ( P .\/ Q ) ) ) .<_ .0. ) ) |
| 93 |
|
hlop |
|- ( K e. HL -> K e. OP ) |
| 94 |
93
|
adantr |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> K e. OP ) |
| 95 |
1 61
|
latmcl |
|- ( ( K e. Lat /\ Q e. B /\ ( X ( meet ` K ) ( P .\/ Q ) ) e. B ) -> ( Q ( meet ` K ) ( X ( meet ` K ) ( P .\/ Q ) ) ) e. B ) |
| 96 |
31 34 85 95
|
syl3anc |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( Q ( meet ` K ) ( X ( meet ` K ) ( P .\/ Q ) ) ) e. B ) |
| 97 |
1 2 4
|
ople0 |
|- ( ( K e. OP /\ ( Q ( meet ` K ) ( X ( meet ` K ) ( P .\/ Q ) ) ) e. B ) -> ( ( Q ( meet ` K ) ( X ( meet ` K ) ( P .\/ Q ) ) ) .<_ .0. <-> ( Q ( meet ` K ) ( X ( meet ` K ) ( P .\/ Q ) ) ) = .0. ) ) |
| 98 |
94 96 97
|
syl2anc |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( ( Q ( meet ` K ) ( X ( meet ` K ) ( P .\/ Q ) ) ) .<_ .0. <-> ( Q ( meet ` K ) ( X ( meet ` K ) ( P .\/ Q ) ) ) = .0. ) ) |
| 99 |
92 98
|
sylibd |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( ( X ( meet ` K ) Q ) = .0. -> ( Q ( meet ` K ) ( X ( meet ` K ) ( P .\/ Q ) ) ) = .0. ) ) |
| 100 |
83 99
|
sylbid |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( -. Q .<_ X -> ( Q ( meet ` K ) ( X ( meet ` K ) ( P .\/ Q ) ) ) = .0. ) ) |
| 101 |
100
|
imp |
|- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ -. Q .<_ X ) -> ( Q ( meet ` K ) ( X ( meet ` K ) ( P .\/ Q ) ) ) = .0. ) |
| 102 |
101
|
adantrl |
|- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ ( P =/= Q /\ -. Q .<_ X ) ) -> ( Q ( meet ` K ) ( X ( meet ` K ) ( P .\/ Q ) ) ) = .0. ) |
| 103 |
102
|
adantrr |
|- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ ( ( P =/= Q /\ -. Q .<_ X ) /\ P .<_ ( X .\/ Q ) ) ) -> ( Q ( meet ` K ) ( X ( meet ` K ) ( P .\/ Q ) ) ) = .0. ) |
| 104 |
1 2 61
|
latmle2 |
|- ( ( K e. Lat /\ X e. B /\ ( P .\/ Q ) e. B ) -> ( X ( meet ` K ) ( P .\/ Q ) ) .<_ ( P .\/ Q ) ) |
| 105 |
31 8 68 104
|
syl3anc |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( X ( meet ` K ) ( P .\/ Q ) ) .<_ ( P .\/ Q ) ) |
| 106 |
1 3
|
latjcom |
|- ( ( K e. Lat /\ P e. B /\ Q e. B ) -> ( P .\/ Q ) = ( Q .\/ P ) ) |
| 107 |
31 66 34 106
|
syl3anc |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( P .\/ Q ) = ( Q .\/ P ) ) |
| 108 |
105 107
|
breqtrd |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( X ( meet ` K ) ( P .\/ Q ) ) .<_ ( Q .\/ P ) ) |
| 109 |
108
|
adantr |
|- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ ( ( P =/= Q /\ -. Q .<_ X ) /\ P .<_ ( X .\/ Q ) ) ) -> ( X ( meet ` K ) ( P .\/ Q ) ) .<_ ( Q .\/ P ) ) |
| 110 |
30
|
adantr |
|- ( ( K e. HL /\ ( ( X ( meet ` K ) ( P .\/ Q ) ) e. A /\ P e. A /\ Q e. B ) ) -> K e. Lat ) |
| 111 |
|
simpr3 |
|- ( ( K e. HL /\ ( ( X ( meet ` K ) ( P .\/ Q ) ) e. A /\ P e. A /\ Q e. B ) ) -> Q e. B ) |
| 112 |
|
simpr1 |
|- ( ( K e. HL /\ ( ( X ( meet ` K ) ( P .\/ Q ) ) e. A /\ P e. A /\ Q e. B ) ) -> ( X ( meet ` K ) ( P .\/ Q ) ) e. A ) |
| 113 |
1 5
|
atbase |
|- ( ( X ( meet ` K ) ( P .\/ Q ) ) e. A -> ( X ( meet ` K ) ( P .\/ Q ) ) e. B ) |
| 114 |
112 113
|
syl |
|- ( ( K e. HL /\ ( ( X ( meet ` K ) ( P .\/ Q ) ) e. A /\ P e. A /\ Q e. B ) ) -> ( X ( meet ` K ) ( P .\/ Q ) ) e. B ) |
| 115 |
1 61
|
latmcom |
|- ( ( K e. Lat /\ Q e. B /\ ( X ( meet ` K ) ( P .\/ Q ) ) e. B ) -> ( Q ( meet ` K ) ( X ( meet ` K ) ( P .\/ Q ) ) ) = ( ( X ( meet ` K ) ( P .\/ Q ) ) ( meet ` K ) Q ) ) |
| 116 |
110 111 114 115
|
syl3anc |
|- ( ( K e. HL /\ ( ( X ( meet ` K ) ( P .\/ Q ) ) e. A /\ P e. A /\ Q e. B ) ) -> ( Q ( meet ` K ) ( X ( meet ` K ) ( P .\/ Q ) ) ) = ( ( X ( meet ` K ) ( P .\/ Q ) ) ( meet ` K ) Q ) ) |
| 117 |
116
|
eqeq1d |
|- ( ( K e. HL /\ ( ( X ( meet ` K ) ( P .\/ Q ) ) e. A /\ P e. A /\ Q e. B ) ) -> ( ( Q ( meet ` K ) ( X ( meet ` K ) ( P .\/ Q ) ) ) = .0. <-> ( ( X ( meet ` K ) ( P .\/ Q ) ) ( meet ` K ) Q ) = .0. ) ) |
| 118 |
1 2 3 61 4 5
|
hlexch3 |
|- ( ( K e. HL /\ ( ( X ( meet ` K ) ( P .\/ Q ) ) e. A /\ P e. A /\ Q e. B ) /\ ( ( X ( meet ` K ) ( P .\/ Q ) ) ( meet ` K ) Q ) = .0. ) -> ( ( X ( meet ` K ) ( P .\/ Q ) ) .<_ ( Q .\/ P ) -> P .<_ ( Q .\/ ( X ( meet ` K ) ( P .\/ Q ) ) ) ) ) |
| 119 |
118
|
3expia |
|- ( ( K e. HL /\ ( ( X ( meet ` K ) ( P .\/ Q ) ) e. A /\ P e. A /\ Q e. B ) ) -> ( ( ( X ( meet ` K ) ( P .\/ Q ) ) ( meet ` K ) Q ) = .0. -> ( ( X ( meet ` K ) ( P .\/ Q ) ) .<_ ( Q .\/ P ) -> P .<_ ( Q .\/ ( X ( meet ` K ) ( P .\/ Q ) ) ) ) ) ) |
| 120 |
117 119
|
sylbid |
|- ( ( K e. HL /\ ( ( X ( meet ` K ) ( P .\/ Q ) ) e. A /\ P e. A /\ Q e. B ) ) -> ( ( Q ( meet ` K ) ( X ( meet ` K ) ( P .\/ Q ) ) ) = .0. -> ( ( X ( meet ` K ) ( P .\/ Q ) ) .<_ ( Q .\/ P ) -> P .<_ ( Q .\/ ( X ( meet ` K ) ( P .\/ Q ) ) ) ) ) ) |
| 121 |
77 103 109 120
|
syl3c |
|- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ ( ( P =/= Q /\ -. Q .<_ X ) /\ P .<_ ( X .\/ Q ) ) ) -> P .<_ ( Q .\/ ( X ( meet ` K ) ( P .\/ Q ) ) ) ) |
| 122 |
71 121
|
jca |
|- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ ( ( P =/= Q /\ -. Q .<_ X ) /\ P .<_ ( X .\/ Q ) ) ) -> ( ( X ( meet ` K ) ( P .\/ Q ) ) .<_ X /\ P .<_ ( Q .\/ ( X ( meet ` K ) ( P .\/ Q ) ) ) ) ) |
| 123 |
122
|
ex |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( ( ( P =/= Q /\ -. Q .<_ X ) /\ P .<_ ( X .\/ Q ) ) -> ( ( X ( meet ` K ) ( P .\/ Q ) ) .<_ X /\ P .<_ ( Q .\/ ( X ( meet ` K ) ( P .\/ Q ) ) ) ) ) ) |
| 124 |
64 123
|
jcad |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( ( ( P =/= Q /\ -. Q .<_ X ) /\ P .<_ ( X .\/ Q ) ) -> ( ( X ( meet ` K ) ( P .\/ Q ) ) e. A /\ ( ( X ( meet ` K ) ( P .\/ Q ) ) .<_ X /\ P .<_ ( Q .\/ ( X ( meet ` K ) ( P .\/ Q ) ) ) ) ) ) ) |
| 125 |
|
breq1 |
|- ( r = ( X ( meet ` K ) ( P .\/ Q ) ) -> ( r .<_ X <-> ( X ( meet ` K ) ( P .\/ Q ) ) .<_ X ) ) |
| 126 |
|
oveq2 |
|- ( r = ( X ( meet ` K ) ( P .\/ Q ) ) -> ( Q .\/ r ) = ( Q .\/ ( X ( meet ` K ) ( P .\/ Q ) ) ) ) |
| 127 |
126
|
breq2d |
|- ( r = ( X ( meet ` K ) ( P .\/ Q ) ) -> ( P .<_ ( Q .\/ r ) <-> P .<_ ( Q .\/ ( X ( meet ` K ) ( P .\/ Q ) ) ) ) ) |
| 128 |
125 127
|
anbi12d |
|- ( r = ( X ( meet ` K ) ( P .\/ Q ) ) -> ( ( r .<_ X /\ P .<_ ( Q .\/ r ) ) <-> ( ( X ( meet ` K ) ( P .\/ Q ) ) .<_ X /\ P .<_ ( Q .\/ ( X ( meet ` K ) ( P .\/ Q ) ) ) ) ) ) |
| 129 |
128
|
rspcev |
|- ( ( ( X ( meet ` K ) ( P .\/ Q ) ) e. A /\ ( ( X ( meet ` K ) ( P .\/ Q ) ) .<_ X /\ P .<_ ( Q .\/ ( X ( meet ` K ) ( P .\/ Q ) ) ) ) ) -> E. r e. A ( r .<_ X /\ P .<_ ( Q .\/ r ) ) ) |
| 130 |
124 129
|
syl6 |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( ( ( P =/= Q /\ -. Q .<_ X ) /\ P .<_ ( X .\/ Q ) ) -> E. r e. A ( r .<_ X /\ P .<_ ( Q .\/ r ) ) ) ) |
| 131 |
130
|
expd |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( ( P =/= Q /\ -. Q .<_ X ) -> ( P .<_ ( X .\/ Q ) -> E. r e. A ( r .<_ X /\ P .<_ ( Q .\/ r ) ) ) ) ) |
| 132 |
60 131
|
biimtrid |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( -. ( P = Q \/ Q .<_ X ) -> ( P .<_ ( X .\/ Q ) -> E. r e. A ( r .<_ X /\ P .<_ ( Q .\/ r ) ) ) ) ) |
| 133 |
56 132
|
syl7 |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( -. ( P = Q \/ Q .<_ X ) -> ( ( X =/= .0. /\ P .<_ ( X .\/ Q ) ) -> E. r e. A ( r .<_ X /\ P .<_ ( Q .\/ r ) ) ) ) ) |
| 134 |
29 55 133
|
ecase3d |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( ( X =/= .0. /\ P .<_ ( X .\/ Q ) ) -> E. r e. A ( r .<_ X /\ P .<_ ( Q .\/ r ) ) ) ) |