| Step |
Hyp |
Ref |
Expression |
| 1 |
|
latmle.b |
|- B = ( Base ` K ) |
| 2 |
|
latmle.l |
|- .<_ = ( le ` K ) |
| 3 |
|
latmle.m |
|- ./\ = ( meet ` K ) |
| 4 |
1 2 3
|
latmlem1 |
|- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X .<_ Y -> ( X ./\ Z ) .<_ ( Y ./\ Z ) ) ) |
| 5 |
1 3
|
latmcom |
|- ( ( K e. Lat /\ X e. B /\ Z e. B ) -> ( X ./\ Z ) = ( Z ./\ X ) ) |
| 6 |
5
|
3adant3r2 |
|- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X ./\ Z ) = ( Z ./\ X ) ) |
| 7 |
1 3
|
latmcom |
|- ( ( K e. Lat /\ Y e. B /\ Z e. B ) -> ( Y ./\ Z ) = ( Z ./\ Y ) ) |
| 8 |
7
|
3adant3r1 |
|- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( Y ./\ Z ) = ( Z ./\ Y ) ) |
| 9 |
6 8
|
breq12d |
|- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X ./\ Z ) .<_ ( Y ./\ Z ) <-> ( Z ./\ X ) .<_ ( Z ./\ Y ) ) ) |
| 10 |
4 9
|
sylibd |
|- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X .<_ Y -> ( Z ./\ X ) .<_ ( Z ./\ Y ) ) ) |