Metamath Proof Explorer


Theorem latmlem2

Description: Add meet to both sides of a lattice ordering. ( sslin analog.) (Contributed by NM, 10-Nov-2011)

Ref Expression
Hypotheses latmle.b B=BaseK
latmle.l ˙=K
latmle.m ˙=meetK
Assertion latmlem2 KLatXBYBZBX˙YZ˙X˙Z˙Y

Proof

Step Hyp Ref Expression
1 latmle.b B=BaseK
2 latmle.l ˙=K
3 latmle.m ˙=meetK
4 1 2 3 latmlem1 KLatXBYBZBX˙YX˙Z˙Y˙Z
5 1 3 latmcom KLatXBZBX˙Z=Z˙X
6 5 3adant3r2 KLatXBYBZBX˙Z=Z˙X
7 1 3 latmcom KLatYBZBY˙Z=Z˙Y
8 7 3adant3r1 KLatXBYBZBY˙Z=Z˙Y
9 6 8 breq12d KLatXBYBZBX˙Z˙Y˙ZZ˙X˙Z˙Y
10 4 9 sylibd KLatXBYBZBX˙YZ˙X˙Z˙Y