Metamath Proof Explorer


Theorem latmlem12

Description: Add join to both sides of a lattice ordering. ( ss2in analog.) (Contributed by NM, 10-Nov-2011)

Ref Expression
Hypotheses latmle.b B=BaseK
latmle.l ˙=K
latmle.m ˙=meetK
Assertion latmlem12 KLatXBYBZBWBX˙YZ˙WX˙Z˙Y˙W

Proof

Step Hyp Ref Expression
1 latmle.b B=BaseK
2 latmle.l ˙=K
3 latmle.m ˙=meetK
4 simp1 KLatXBYBZBWBKLat
5 simp2l KLatXBYBZBWBXB
6 simp2r KLatXBYBZBWBYB
7 simp3l KLatXBYBZBWBZB
8 1 2 3 latmlem1 KLatXBYBZBX˙YX˙Z˙Y˙Z
9 4 5 6 7 8 syl13anc KLatXBYBZBWBX˙YX˙Z˙Y˙Z
10 simp3r KLatXBYBZBWBWB
11 1 2 3 latmlem2 KLatZBWBYBZ˙WY˙Z˙Y˙W
12 4 7 10 6 11 syl13anc KLatXBYBZBWBZ˙WY˙Z˙Y˙W
13 1 3 latmcl KLatXBZBX˙ZB
14 4 5 7 13 syl3anc KLatXBYBZBWBX˙ZB
15 1 3 latmcl KLatYBZBY˙ZB
16 4 6 7 15 syl3anc KLatXBYBZBWBY˙ZB
17 1 3 latmcl KLatYBWBY˙WB
18 4 6 10 17 syl3anc KLatXBYBZBWBY˙WB
19 1 2 lattr KLatX˙ZBY˙ZBY˙WBX˙Z˙Y˙ZY˙Z˙Y˙WX˙Z˙Y˙W
20 4 14 16 18 19 syl13anc KLatXBYBZBWBX˙Z˙Y˙ZY˙Z˙Y˙WX˙Z˙Y˙W
21 9 12 20 syl2and KLatXBYBZBWBX˙YZ˙WX˙Z˙Y˙W