Metamath Proof Explorer


Theorem cvrat4

Description: A condition implying existence of an atom with the properties shown. Lemma 3.2.20 in PtakPulmannova p. 68. Also Lemma 9.2(delta) in MaedaMaeda p. 41. ( atcvat4i analog.) (Contributed by NM, 30-Nov-2011)

Ref Expression
Hypotheses cvrat4.b B=BaseK
cvrat4.l ˙=K
cvrat4.j ˙=joinK
cvrat4.z 0˙=0.K
cvrat4.a A=AtomsK
Assertion cvrat4 KHLXBPAQAX0˙P˙X˙QrAr˙XP˙Q˙r

Proof

Step Hyp Ref Expression
1 cvrat4.b B=BaseK
2 cvrat4.l ˙=K
3 cvrat4.j ˙=joinK
4 cvrat4.z 0˙=0.K
5 cvrat4.a A=AtomsK
6 hlatl KHLKAtLat
7 6 adantr KHLXBPAQAKAtLat
8 simpr1 KHLXBPAQAXB
9 1 2 4 5 atlex KAtLatXBX0˙rAr˙X
10 9 3exp KAtLatXBX0˙rAr˙X
11 7 8 10 sylc KHLXBPAQAX0˙rAr˙X
12 11 adantr KHLXBPAQAP=QX0˙rAr˙X
13 simpll KHLXBPAQArAKHL
14 simplr3 KHLXBPAQArAQA
15 simpr KHLXBPAQArArA
16 2 3 5 hlatlej1 KHLQArAQ˙Q˙r
17 13 14 15 16 syl3anc KHLXBPAQArAQ˙Q˙r
18 breq1 P=QP˙Q˙rQ˙Q˙r
19 17 18 imbitrrid P=QKHLXBPAQArAP˙Q˙r
20 19 expd P=QKHLXBPAQArAP˙Q˙r
21 20 impcom KHLXBPAQAP=QrAP˙Q˙r
22 21 anim2d KHLXBPAQAP=Qr˙XrAr˙XP˙Q˙r
23 22 expcomd KHLXBPAQAP=QrAr˙Xr˙XP˙Q˙r
24 23 reximdvai KHLXBPAQAP=QrAr˙XrAr˙XP˙Q˙r
25 12 24 syld KHLXBPAQAP=QX0˙rAr˙XP˙Q˙r
26 25 ex KHLXBPAQAP=QX0˙rAr˙XP˙Q˙r
27 26 a1i P˙X˙QKHLXBPAQAP=QX0˙rAr˙XP˙Q˙r
28 27 com4l KHLXBPAQAP=QX0˙P˙X˙QrAr˙XP˙Q˙r
29 28 imp4a KHLXBPAQAP=QX0˙P˙X˙QrAr˙XP˙Q˙r
30 hllat KHLKLat
31 30 adantr KHLXBPAQAKLat
32 simpr3 KHLXBPAQAQA
33 1 5 atbase QAQB
34 32 33 syl KHLXBPAQAQB
35 1 2 3 latleeqj2 KLatQBXBQ˙XX˙Q=X
36 31 34 8 35 syl3anc KHLXBPAQAQ˙XX˙Q=X
37 36 biimpa KHLXBPAQAQ˙XX˙Q=X
38 37 breq2d KHLXBPAQAQ˙XP˙X˙QP˙X
39 38 biimpa KHLXBPAQAQ˙XP˙X˙QP˙X
40 39 expl KHLXBPAQAQ˙XP˙X˙QP˙X
41 simpl KHLXBPAQAKHL
42 simpr2 KHLXBPAQAPA
43 2 3 5 hlatlej2 KHLQAPAP˙Q˙P
44 41 32 42 43 syl3anc KHLXBPAQAP˙Q˙P
45 40 44 jctird KHLXBPAQAQ˙XP˙X˙QP˙XP˙Q˙P
46 45 42 jctild KHLXBPAQAQ˙XP˙X˙QPAP˙XP˙Q˙P
47 46 impl KHLXBPAQAQ˙XP˙X˙QPAP˙XP˙Q˙P
48 breq1 r=Pr˙XP˙X
49 oveq2 r=PQ˙r=Q˙P
50 49 breq2d r=PP˙Q˙rP˙Q˙P
51 48 50 anbi12d r=Pr˙XP˙Q˙rP˙XP˙Q˙P
52 51 rspcev PAP˙XP˙Q˙PrAr˙XP˙Q˙r
53 47 52 syl KHLXBPAQAQ˙XP˙X˙QrAr˙XP˙Q˙r
54 53 adantrl KHLXBPAQAQ˙XX0˙P˙X˙QrAr˙XP˙Q˙r
55 54 exp31 KHLXBPAQAQ˙XX0˙P˙X˙QrAr˙XP˙Q˙r
56 simpr X0˙P˙X˙QP˙X˙Q
57 ioran ¬P=QQ˙X¬P=Q¬Q˙X
58 df-ne PQ¬P=Q
59 58 anbi1i PQ¬Q˙X¬P=Q¬Q˙X
60 57 59 bitr4i ¬P=QQ˙XPQ¬Q˙X
61 eqid meetK=meetK
62 1 2 3 61 5 cvrat3 KHLXBPAQAPQ¬Q˙XP˙X˙QXmeetKP˙QA
63 62 3expd KHLXBPAQAPQ¬Q˙XP˙X˙QXmeetKP˙QA
64 63 imp4c KHLXBPAQAPQ¬Q˙XP˙X˙QXmeetKP˙QA
65 1 5 atbase PAPB
66 42 65 syl KHLXBPAQAPB
67 1 3 latjcl KLatPBQBP˙QB
68 31 66 34 67 syl3anc KHLXBPAQAP˙QB
69 1 2 61 latmle1 KLatXBP˙QBXmeetKP˙Q˙X
70 31 8 68 69 syl3anc KHLXBPAQAXmeetKP˙Q˙X
71 70 adantr KHLXBPAQAPQ¬Q˙XP˙X˙QXmeetKP˙Q˙X
72 simpll KHLXBPAQAPQ¬Q˙XP˙X˙QKHL
73 63 imp44 KHLXBPAQAPQ¬Q˙XP˙X˙QXmeetKP˙QA
74 simplr2 KHLXBPAQAPQ¬Q˙XP˙X˙QPA
75 34 adantr KHLXBPAQAPQ¬Q˙XP˙X˙QQB
76 73 74 75 3jca KHLXBPAQAPQ¬Q˙XP˙X˙QXmeetKP˙QAPAQB
77 72 76 jca KHLXBPAQAPQ¬Q˙XP˙X˙QKHLXmeetKP˙QAPAQB
78 1 2 61 4 5 atnle KAtLatQAXB¬Q˙XQmeetKX=0˙
79 7 32 8 78 syl3anc KHLXBPAQA¬Q˙XQmeetKX=0˙
80 1 61 latmcom KLatQBXBQmeetKX=XmeetKQ
81 31 34 8 80 syl3anc KHLXBPAQAQmeetKX=XmeetKQ
82 81 eqeq1d KHLXBPAQAQmeetKX=0˙XmeetKQ=0˙
83 79 82 bitrd KHLXBPAQA¬Q˙XXmeetKQ=0˙
84 1 61 latmcl KLatXBP˙QBXmeetKP˙QB
85 31 8 68 84 syl3anc KHLXBPAQAXmeetKP˙QB
86 85 8 34 3jca KHLXBPAQAXmeetKP˙QBXBQB
87 31 86 jca KHLXBPAQAKLatXmeetKP˙QBXBQB
88 1 2 61 latmlem2 KLatXmeetKP˙QBXBQBXmeetKP˙Q˙XQmeetKXmeetKP˙Q˙QmeetKX
89 87 70 88 sylc KHLXBPAQAQmeetKXmeetKP˙Q˙QmeetKX
90 89 81 breqtrd KHLXBPAQAQmeetKXmeetKP˙Q˙XmeetKQ
91 breq2 XmeetKQ=0˙QmeetKXmeetKP˙Q˙XmeetKQQmeetKXmeetKP˙Q˙0˙
92 90 91 syl5ibcom KHLXBPAQAXmeetKQ=0˙QmeetKXmeetKP˙Q˙0˙
93 hlop KHLKOP
94 93 adantr KHLXBPAQAKOP
95 1 61 latmcl KLatQBXmeetKP˙QBQmeetKXmeetKP˙QB
96 31 34 85 95 syl3anc KHLXBPAQAQmeetKXmeetKP˙QB
97 1 2 4 ople0 KOPQmeetKXmeetKP˙QBQmeetKXmeetKP˙Q˙0˙QmeetKXmeetKP˙Q=0˙
98 94 96 97 syl2anc KHLXBPAQAQmeetKXmeetKP˙Q˙0˙QmeetKXmeetKP˙Q=0˙
99 92 98 sylibd KHLXBPAQAXmeetKQ=0˙QmeetKXmeetKP˙Q=0˙
100 83 99 sylbid KHLXBPAQA¬Q˙XQmeetKXmeetKP˙Q=0˙
101 100 imp KHLXBPAQA¬Q˙XQmeetKXmeetKP˙Q=0˙
102 101 adantrl KHLXBPAQAPQ¬Q˙XQmeetKXmeetKP˙Q=0˙
103 102 adantrr KHLXBPAQAPQ¬Q˙XP˙X˙QQmeetKXmeetKP˙Q=0˙
104 1 2 61 latmle2 KLatXBP˙QBXmeetKP˙Q˙P˙Q
105 31 8 68 104 syl3anc KHLXBPAQAXmeetKP˙Q˙P˙Q
106 1 3 latjcom KLatPBQBP˙Q=Q˙P
107 31 66 34 106 syl3anc KHLXBPAQAP˙Q=Q˙P
108 105 107 breqtrd KHLXBPAQAXmeetKP˙Q˙Q˙P
109 108 adantr KHLXBPAQAPQ¬Q˙XP˙X˙QXmeetKP˙Q˙Q˙P
110 30 adantr KHLXmeetKP˙QAPAQBKLat
111 simpr3 KHLXmeetKP˙QAPAQBQB
112 simpr1 KHLXmeetKP˙QAPAQBXmeetKP˙QA
113 1 5 atbase XmeetKP˙QAXmeetKP˙QB
114 112 113 syl KHLXmeetKP˙QAPAQBXmeetKP˙QB
115 1 61 latmcom KLatQBXmeetKP˙QBQmeetKXmeetKP˙Q=XmeetKP˙QmeetKQ
116 110 111 114 115 syl3anc KHLXmeetKP˙QAPAQBQmeetKXmeetKP˙Q=XmeetKP˙QmeetKQ
117 116 eqeq1d KHLXmeetKP˙QAPAQBQmeetKXmeetKP˙Q=0˙XmeetKP˙QmeetKQ=0˙
118 1 2 3 61 4 5 hlexch3 KHLXmeetKP˙QAPAQBXmeetKP˙QmeetKQ=0˙XmeetKP˙Q˙Q˙PP˙Q˙XmeetKP˙Q
119 118 3expia KHLXmeetKP˙QAPAQBXmeetKP˙QmeetKQ=0˙XmeetKP˙Q˙Q˙PP˙Q˙XmeetKP˙Q
120 117 119 sylbid KHLXmeetKP˙QAPAQBQmeetKXmeetKP˙Q=0˙XmeetKP˙Q˙Q˙PP˙Q˙XmeetKP˙Q
121 77 103 109 120 syl3c KHLXBPAQAPQ¬Q˙XP˙X˙QP˙Q˙XmeetKP˙Q
122 71 121 jca KHLXBPAQAPQ¬Q˙XP˙X˙QXmeetKP˙Q˙XP˙Q˙XmeetKP˙Q
123 122 ex KHLXBPAQAPQ¬Q˙XP˙X˙QXmeetKP˙Q˙XP˙Q˙XmeetKP˙Q
124 64 123 jcad KHLXBPAQAPQ¬Q˙XP˙X˙QXmeetKP˙QAXmeetKP˙Q˙XP˙Q˙XmeetKP˙Q
125 breq1 r=XmeetKP˙Qr˙XXmeetKP˙Q˙X
126 oveq2 r=XmeetKP˙QQ˙r=Q˙XmeetKP˙Q
127 126 breq2d r=XmeetKP˙QP˙Q˙rP˙Q˙XmeetKP˙Q
128 125 127 anbi12d r=XmeetKP˙Qr˙XP˙Q˙rXmeetKP˙Q˙XP˙Q˙XmeetKP˙Q
129 128 rspcev XmeetKP˙QAXmeetKP˙Q˙XP˙Q˙XmeetKP˙QrAr˙XP˙Q˙r
130 124 129 syl6 KHLXBPAQAPQ¬Q˙XP˙X˙QrAr˙XP˙Q˙r
131 130 expd KHLXBPAQAPQ¬Q˙XP˙X˙QrAr˙XP˙Q˙r
132 60 131 biimtrid KHLXBPAQA¬P=QQ˙XP˙X˙QrAr˙XP˙Q˙r
133 56 132 syl7 KHLXBPAQA¬P=QQ˙XX0˙P˙X˙QrAr˙XP˙Q˙r
134 29 55 133 ecase3d KHLXBPAQAX0˙P˙X˙QrAr˙XP˙Q˙r