Metamath Proof Explorer


Theorem hlexch3

Description: A Hilbert lattice has the exchange property. ( atexch analog.) (Contributed by NM, 15-Nov-2011)

Ref Expression
Hypotheses hlexch3.b
|- B = ( Base ` K )
hlexch3.l
|- .<_ = ( le ` K )
hlexch3.j
|- .\/ = ( join ` K )
hlexch3.m
|- ./\ = ( meet ` K )
hlexch3.z
|- .0. = ( 0. ` K )
hlexch3.a
|- A = ( Atoms ` K )
Assertion hlexch3
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ X e. B ) /\ ( P ./\ X ) = .0. ) -> ( P .<_ ( X .\/ Q ) -> Q .<_ ( X .\/ P ) ) )

Proof

Step Hyp Ref Expression
1 hlexch3.b
 |-  B = ( Base ` K )
2 hlexch3.l
 |-  .<_ = ( le ` K )
3 hlexch3.j
 |-  .\/ = ( join ` K )
4 hlexch3.m
 |-  ./\ = ( meet ` K )
5 hlexch3.z
 |-  .0. = ( 0. ` K )
6 hlexch3.a
 |-  A = ( Atoms ` K )
7 hlcvl
 |-  ( K e. HL -> K e. CvLat )
8 1 2 3 4 5 6 cvlexch3
 |-  ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ X e. B ) /\ ( P ./\ X ) = .0. ) -> ( P .<_ ( X .\/ Q ) -> Q .<_ ( X .\/ P ) ) )
9 7 8 syl3an1
 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ X e. B ) /\ ( P ./\ X ) = .0. ) -> ( P .<_ ( X .\/ Q ) -> Q .<_ ( X .\/ P ) ) )