Step |
Hyp |
Ref |
Expression |
1 |
|
cvrat3.b |
|- B = ( Base ` K ) |
2 |
|
cvrat3.l |
|- .<_ = ( le ` K ) |
3 |
|
cvrat3.j |
|- .\/ = ( join ` K ) |
4 |
|
cvrat3.m |
|- ./\ = ( meet ` K ) |
5 |
|
cvrat3.a |
|- A = ( Atoms ` K ) |
6 |
|
eqid |
|- ( |
7 |
1 2 3 6 5
|
cvr1 |
|- ( ( K e. HL /\ X e. B /\ Q e. A ) -> ( -. Q .<_ X <-> X ( |
8 |
7
|
3adant3r2 |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( -. Q .<_ X <-> X ( |
9 |
8
|
biimpa |
|- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ -. Q .<_ X ) -> X ( |
10 |
9
|
adantrr |
|- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ ( -. Q .<_ X /\ P .<_ ( X .\/ Q ) ) ) -> X ( |
11 |
|
hllat |
|- ( K e. HL -> K e. Lat ) |
12 |
11
|
adantr |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> K e. Lat ) |
13 |
|
simpr2 |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> P e. A ) |
14 |
1 5
|
atbase |
|- ( P e. A -> P e. B ) |
15 |
13 14
|
syl |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> P e. B ) |
16 |
|
simpr3 |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> Q e. A ) |
17 |
1 5
|
atbase |
|- ( Q e. A -> Q e. B ) |
18 |
16 17
|
syl |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> Q e. B ) |
19 |
1 3
|
latjcom |
|- ( ( K e. Lat /\ P e. B /\ Q e. B ) -> ( P .\/ Q ) = ( Q .\/ P ) ) |
20 |
12 15 18 19
|
syl3anc |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( P .\/ Q ) = ( Q .\/ P ) ) |
21 |
20
|
oveq2d |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( X .\/ ( P .\/ Q ) ) = ( X .\/ ( Q .\/ P ) ) ) |
22 |
|
simpr1 |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> X e. B ) |
23 |
1 3
|
latjass |
|- ( ( K e. Lat /\ ( X e. B /\ Q e. B /\ P e. B ) ) -> ( ( X .\/ Q ) .\/ P ) = ( X .\/ ( Q .\/ P ) ) ) |
24 |
12 22 18 15 23
|
syl13anc |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( ( X .\/ Q ) .\/ P ) = ( X .\/ ( Q .\/ P ) ) ) |
25 |
21 24
|
eqtr4d |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( X .\/ ( P .\/ Q ) ) = ( ( X .\/ Q ) .\/ P ) ) |
26 |
25
|
adantr |
|- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ P .<_ ( X .\/ Q ) ) -> ( X .\/ ( P .\/ Q ) ) = ( ( X .\/ Q ) .\/ P ) ) |
27 |
1 3
|
latjcl |
|- ( ( K e. Lat /\ X e. B /\ Q e. B ) -> ( X .\/ Q ) e. B ) |
28 |
12 22 18 27
|
syl3anc |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( X .\/ Q ) e. B ) |
29 |
1 2 3
|
latjlej2 |
|- ( ( K e. Lat /\ ( P e. B /\ ( X .\/ Q ) e. B /\ ( X .\/ Q ) e. B ) ) -> ( P .<_ ( X .\/ Q ) -> ( ( X .\/ Q ) .\/ P ) .<_ ( ( X .\/ Q ) .\/ ( X .\/ Q ) ) ) ) |
30 |
12 15 28 28 29
|
syl13anc |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( P .<_ ( X .\/ Q ) -> ( ( X .\/ Q ) .\/ P ) .<_ ( ( X .\/ Q ) .\/ ( X .\/ Q ) ) ) ) |
31 |
30
|
imp |
|- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ P .<_ ( X .\/ Q ) ) -> ( ( X .\/ Q ) .\/ P ) .<_ ( ( X .\/ Q ) .\/ ( X .\/ Q ) ) ) |
32 |
26 31
|
eqbrtrd |
|- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ P .<_ ( X .\/ Q ) ) -> ( X .\/ ( P .\/ Q ) ) .<_ ( ( X .\/ Q ) .\/ ( X .\/ Q ) ) ) |
33 |
1 3
|
latjidm |
|- ( ( K e. Lat /\ ( X .\/ Q ) e. B ) -> ( ( X .\/ Q ) .\/ ( X .\/ Q ) ) = ( X .\/ Q ) ) |
34 |
12 28 33
|
syl2anc |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( ( X .\/ Q ) .\/ ( X .\/ Q ) ) = ( X .\/ Q ) ) |
35 |
34
|
adantr |
|- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ P .<_ ( X .\/ Q ) ) -> ( ( X .\/ Q ) .\/ ( X .\/ Q ) ) = ( X .\/ Q ) ) |
36 |
32 35
|
breqtrd |
|- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ P .<_ ( X .\/ Q ) ) -> ( X .\/ ( P .\/ Q ) ) .<_ ( X .\/ Q ) ) |
37 |
|
simpl |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> K e. HL ) |
38 |
2 3 5
|
hlatlej2 |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> Q .<_ ( P .\/ Q ) ) |
39 |
37 13 16 38
|
syl3anc |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> Q .<_ ( P .\/ Q ) ) |
40 |
1 3
|
latjcl |
|- ( ( K e. Lat /\ P e. B /\ Q e. B ) -> ( P .\/ Q ) e. B ) |
41 |
12 15 18 40
|
syl3anc |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( P .\/ Q ) e. B ) |
42 |
1 2 3
|
latjlej2 |
|- ( ( K e. Lat /\ ( Q e. B /\ ( P .\/ Q ) e. B /\ X e. B ) ) -> ( Q .<_ ( P .\/ Q ) -> ( X .\/ Q ) .<_ ( X .\/ ( P .\/ Q ) ) ) ) |
43 |
12 18 41 22 42
|
syl13anc |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( Q .<_ ( P .\/ Q ) -> ( X .\/ Q ) .<_ ( X .\/ ( P .\/ Q ) ) ) ) |
44 |
39 43
|
mpd |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( X .\/ Q ) .<_ ( X .\/ ( P .\/ Q ) ) ) |
45 |
44
|
adantr |
|- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ P .<_ ( X .\/ Q ) ) -> ( X .\/ Q ) .<_ ( X .\/ ( P .\/ Q ) ) ) |
46 |
1 3
|
latjcl |
|- ( ( K e. Lat /\ X e. B /\ ( P .\/ Q ) e. B ) -> ( X .\/ ( P .\/ Q ) ) e. B ) |
47 |
12 22 41 46
|
syl3anc |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( X .\/ ( P .\/ Q ) ) e. B ) |
48 |
1 2
|
latasymb |
|- ( ( K e. Lat /\ ( X .\/ ( P .\/ Q ) ) e. B /\ ( X .\/ Q ) e. B ) -> ( ( ( X .\/ ( P .\/ Q ) ) .<_ ( X .\/ Q ) /\ ( X .\/ Q ) .<_ ( X .\/ ( P .\/ Q ) ) ) <-> ( X .\/ ( P .\/ Q ) ) = ( X .\/ Q ) ) ) |
49 |
12 47 28 48
|
syl3anc |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( ( ( X .\/ ( P .\/ Q ) ) .<_ ( X .\/ Q ) /\ ( X .\/ Q ) .<_ ( X .\/ ( P .\/ Q ) ) ) <-> ( X .\/ ( P .\/ Q ) ) = ( X .\/ Q ) ) ) |
50 |
49
|
adantr |
|- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ P .<_ ( X .\/ Q ) ) -> ( ( ( X .\/ ( P .\/ Q ) ) .<_ ( X .\/ Q ) /\ ( X .\/ Q ) .<_ ( X .\/ ( P .\/ Q ) ) ) <-> ( X .\/ ( P .\/ Q ) ) = ( X .\/ Q ) ) ) |
51 |
36 45 50
|
mpbi2and |
|- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ P .<_ ( X .\/ Q ) ) -> ( X .\/ ( P .\/ Q ) ) = ( X .\/ Q ) ) |
52 |
51
|
breq2d |
|- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ P .<_ ( X .\/ Q ) ) -> ( X ( X ( |
53 |
52
|
adantrl |
|- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ ( -. Q .<_ X /\ P .<_ ( X .\/ Q ) ) ) -> ( X ( X ( |
54 |
10 53
|
mpbird |
|- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ ( -. Q .<_ X /\ P .<_ ( X .\/ Q ) ) ) -> X ( |
55 |
54
|
ex |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( ( -. Q .<_ X /\ P .<_ ( X .\/ Q ) ) -> X ( |
56 |
1 3 4 6
|
cvrexch |
|- ( ( K e. HL /\ X e. B /\ ( P .\/ Q ) e. B ) -> ( ( X ./\ ( P .\/ Q ) ) ( X ( |
57 |
37 22 41 56
|
syl3anc |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( ( X ./\ ( P .\/ Q ) ) ( X ( |
58 |
55 57
|
sylibrd |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( ( -. Q .<_ X /\ P .<_ ( X .\/ Q ) ) -> ( X ./\ ( P .\/ Q ) ) ( |
59 |
58
|
adantr |
|- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ P =/= Q ) -> ( ( -. Q .<_ X /\ P .<_ ( X .\/ Q ) ) -> ( X ./\ ( P .\/ Q ) ) ( |
60 |
1 4
|
latmcl |
|- ( ( K e. Lat /\ X e. B /\ ( P .\/ Q ) e. B ) -> ( X ./\ ( P .\/ Q ) ) e. B ) |
61 |
12 22 41 60
|
syl3anc |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( X ./\ ( P .\/ Q ) ) e. B ) |
62 |
1 3 6 5
|
cvrat2 |
|- ( ( K e. HL /\ ( ( X ./\ ( P .\/ Q ) ) e. B /\ P e. A /\ Q e. A ) /\ ( P =/= Q /\ ( X ./\ ( P .\/ Q ) ) ( ( X ./\ ( P .\/ Q ) ) e. A ) |
63 |
62
|
3expia |
|- ( ( K e. HL /\ ( ( X ./\ ( P .\/ Q ) ) e. B /\ P e. A /\ Q e. A ) ) -> ( ( P =/= Q /\ ( X ./\ ( P .\/ Q ) ) ( ( X ./\ ( P .\/ Q ) ) e. A ) ) |
64 |
37 61 13 16 63
|
syl13anc |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( ( P =/= Q /\ ( X ./\ ( P .\/ Q ) ) ( ( X ./\ ( P .\/ Q ) ) e. A ) ) |
65 |
64
|
expdimp |
|- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ P =/= Q ) -> ( ( X ./\ ( P .\/ Q ) ) ( ( X ./\ ( P .\/ Q ) ) e. A ) ) |
66 |
59 65
|
syld |
|- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ P =/= Q ) -> ( ( -. Q .<_ X /\ P .<_ ( X .\/ Q ) ) -> ( X ./\ ( P .\/ Q ) ) e. A ) ) |
67 |
66
|
exp4b |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( P =/= Q -> ( -. Q .<_ X -> ( P .<_ ( X .\/ Q ) -> ( X ./\ ( P .\/ Q ) ) e. A ) ) ) ) |
68 |
67
|
3impd |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( ( P =/= Q /\ -. Q .<_ X /\ P .<_ ( X .\/ Q ) ) -> ( X ./\ ( P .\/ Q ) ) e. A ) ) |