| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cvrat2.b |
|- B = ( Base ` K ) |
| 2 |
|
cvrat2.j |
|- .\/ = ( join ` K ) |
| 3 |
|
cvrat2.c |
|- C = ( |
| 4 |
|
cvrat2.a |
|- A = ( Atoms ` K ) |
| 5 |
|
eqid |
|- ( 0. ` K ) = ( 0. ` K ) |
| 6 |
1 2 5 3 4
|
atcvrj0 |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) /\ X C ( P .\/ Q ) ) -> ( X = ( 0. ` K ) <-> P = Q ) ) |
| 7 |
6
|
3expa |
|- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ X C ( P .\/ Q ) ) -> ( X = ( 0. ` K ) <-> P = Q ) ) |
| 8 |
7
|
necon3bid |
|- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ X C ( P .\/ Q ) ) -> ( X =/= ( 0. ` K ) <-> P =/= Q ) ) |
| 9 |
|
simpl |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> K e. HL ) |
| 10 |
|
simpr1 |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> X e. B ) |
| 11 |
|
hllat |
|- ( K e. HL -> K e. Lat ) |
| 12 |
11
|
adantr |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> K e. Lat ) |
| 13 |
|
simpr2 |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> P e. A ) |
| 14 |
1 4
|
atbase |
|- ( P e. A -> P e. B ) |
| 15 |
13 14
|
syl |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> P e. B ) |
| 16 |
|
simpr3 |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> Q e. A ) |
| 17 |
1 4
|
atbase |
|- ( Q e. A -> Q e. B ) |
| 18 |
16 17
|
syl |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> Q e. B ) |
| 19 |
1 2
|
latjcl |
|- ( ( K e. Lat /\ P e. B /\ Q e. B ) -> ( P .\/ Q ) e. B ) |
| 20 |
12 15 18 19
|
syl3anc |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( P .\/ Q ) e. B ) |
| 21 |
|
eqid |
|- ( lt ` K ) = ( lt ` K ) |
| 22 |
1 21 3
|
cvrlt |
|- ( ( ( K e. HL /\ X e. B /\ ( P .\/ Q ) e. B ) /\ X C ( P .\/ Q ) ) -> X ( lt ` K ) ( P .\/ Q ) ) |
| 23 |
22
|
ex |
|- ( ( K e. HL /\ X e. B /\ ( P .\/ Q ) e. B ) -> ( X C ( P .\/ Q ) -> X ( lt ` K ) ( P .\/ Q ) ) ) |
| 24 |
9 10 20 23
|
syl3anc |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( X C ( P .\/ Q ) -> X ( lt ` K ) ( P .\/ Q ) ) ) |
| 25 |
1 21 2 5 4
|
cvrat |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( ( X =/= ( 0. ` K ) /\ X ( lt ` K ) ( P .\/ Q ) ) -> X e. A ) ) |
| 26 |
25
|
expcomd |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( X ( lt ` K ) ( P .\/ Q ) -> ( X =/= ( 0. ` K ) -> X e. A ) ) ) |
| 27 |
24 26
|
syld |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( X C ( P .\/ Q ) -> ( X =/= ( 0. ` K ) -> X e. A ) ) ) |
| 28 |
27
|
imp |
|- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ X C ( P .\/ Q ) ) -> ( X =/= ( 0. ` K ) -> X e. A ) ) |
| 29 |
8 28
|
sylbird |
|- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ X C ( P .\/ Q ) ) -> ( P =/= Q -> X e. A ) ) |
| 30 |
29
|
ex |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( X C ( P .\/ Q ) -> ( P =/= Q -> X e. A ) ) ) |
| 31 |
30
|
com23 |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( P =/= Q -> ( X C ( P .\/ Q ) -> X e. A ) ) ) |
| 32 |
31
|
impd |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( ( P =/= Q /\ X C ( P .\/ Q ) ) -> X e. A ) ) |
| 33 |
32
|
3impia |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) /\ ( P =/= Q /\ X C ( P .\/ Q ) ) ) -> X e. A ) |