Step |
Hyp |
Ref |
Expression |
1 |
|
atcvrj0.b |
|- B = ( Base ` K ) |
2 |
|
atcvrj0.j |
|- .\/ = ( join ` K ) |
3 |
|
atcvrj0.z |
|- .0. = ( 0. ` K ) |
4 |
|
atcvrj0.c |
|- C = ( |
5 |
|
atcvrj0.a |
|- A = ( Atoms ` K ) |
6 |
|
breq1 |
|- ( X = .0. -> ( X C ( P .\/ Q ) <-> .0. C ( P .\/ Q ) ) ) |
7 |
6
|
biimpd |
|- ( X = .0. -> ( X C ( P .\/ Q ) -> .0. C ( P .\/ Q ) ) ) |
8 |
7
|
adantl |
|- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ X = .0. ) -> ( X C ( P .\/ Q ) -> .0. C ( P .\/ Q ) ) ) |
9 |
2 3 4 5
|
atcvr0eq |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( .0. C ( P .\/ Q ) <-> P = Q ) ) |
10 |
9
|
3adant3r1 |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( .0. C ( P .\/ Q ) <-> P = Q ) ) |
11 |
10
|
adantr |
|- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ X = .0. ) -> ( .0. C ( P .\/ Q ) <-> P = Q ) ) |
12 |
8 11
|
sylibd |
|- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ X = .0. ) -> ( X C ( P .\/ Q ) -> P = Q ) ) |
13 |
12
|
ex |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( X = .0. -> ( X C ( P .\/ Q ) -> P = Q ) ) ) |
14 |
13
|
com23 |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( X C ( P .\/ Q ) -> ( X = .0. -> P = Q ) ) ) |
15 |
14
|
3impia |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) /\ X C ( P .\/ Q ) ) -> ( X = .0. -> P = Q ) ) |
16 |
|
oveq1 |
|- ( P = Q -> ( P .\/ Q ) = ( Q .\/ Q ) ) |
17 |
16
|
breq2d |
|- ( P = Q -> ( X C ( P .\/ Q ) <-> X C ( Q .\/ Q ) ) ) |
18 |
17
|
biimpac |
|- ( ( X C ( P .\/ Q ) /\ P = Q ) -> X C ( Q .\/ Q ) ) |
19 |
|
simpr3 |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> Q e. A ) |
20 |
2 5
|
hlatjidm |
|- ( ( K e. HL /\ Q e. A ) -> ( Q .\/ Q ) = Q ) |
21 |
19 20
|
syldan |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( Q .\/ Q ) = Q ) |
22 |
21
|
breq2d |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( X C ( Q .\/ Q ) <-> X C Q ) ) |
23 |
|
hlatl |
|- ( K e. HL -> K e. AtLat ) |
24 |
23
|
adantr |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> K e. AtLat ) |
25 |
|
simpr1 |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> X e. B ) |
26 |
|
eqid |
|- ( le ` K ) = ( le ` K ) |
27 |
1 26 3 4 5
|
atcvreq0 |
|- ( ( K e. AtLat /\ X e. B /\ Q e. A ) -> ( X C Q <-> X = .0. ) ) |
28 |
24 25 19 27
|
syl3anc |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( X C Q <-> X = .0. ) ) |
29 |
28
|
biimpd |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( X C Q -> X = .0. ) ) |
30 |
22 29
|
sylbid |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( X C ( Q .\/ Q ) -> X = .0. ) ) |
31 |
18 30
|
syl5 |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( ( X C ( P .\/ Q ) /\ P = Q ) -> X = .0. ) ) |
32 |
31
|
expd |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( X C ( P .\/ Q ) -> ( P = Q -> X = .0. ) ) ) |
33 |
32
|
3impia |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) /\ X C ( P .\/ Q ) ) -> ( P = Q -> X = .0. ) ) |
34 |
15 33
|
impbid |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) /\ X C ( P .\/ Q ) ) -> ( X = .0. <-> P = Q ) ) |