Metamath Proof Explorer


Theorem atcvrj0

Description: Two atoms covering the zero subspace are equal. ( atcv1 analog.) (Contributed by NM, 29-Nov-2011)

Ref Expression
Hypotheses atcvrj0.b
|- B = ( Base ` K )
atcvrj0.j
|- .\/ = ( join ` K )
atcvrj0.z
|- .0. = ( 0. ` K )
atcvrj0.c
|- C = ( 
atcvrj0.a
|- A = ( Atoms ` K )
Assertion atcvrj0
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) /\ X C ( P .\/ Q ) ) -> ( X = .0. <-> P = Q ) )

Proof

Step Hyp Ref Expression
1 atcvrj0.b
 |-  B = ( Base ` K )
2 atcvrj0.j
 |-  .\/ = ( join ` K )
3 atcvrj0.z
 |-  .0. = ( 0. ` K )
4 atcvrj0.c
 |-  C = ( 
5 atcvrj0.a
 |-  A = ( Atoms ` K )
6 breq1
 |-  ( X = .0. -> ( X C ( P .\/ Q ) <-> .0. C ( P .\/ Q ) ) )
7 6 biimpd
 |-  ( X = .0. -> ( X C ( P .\/ Q ) -> .0. C ( P .\/ Q ) ) )
8 7 adantl
 |-  ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ X = .0. ) -> ( X C ( P .\/ Q ) -> .0. C ( P .\/ Q ) ) )
9 2 3 4 5 atcvr0eq
 |-  ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( .0. C ( P .\/ Q ) <-> P = Q ) )
10 9 3adant3r1
 |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( .0. C ( P .\/ Q ) <-> P = Q ) )
11 10 adantr
 |-  ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ X = .0. ) -> ( .0. C ( P .\/ Q ) <-> P = Q ) )
12 8 11 sylibd
 |-  ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ X = .0. ) -> ( X C ( P .\/ Q ) -> P = Q ) )
13 12 ex
 |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( X = .0. -> ( X C ( P .\/ Q ) -> P = Q ) ) )
14 13 com23
 |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( X C ( P .\/ Q ) -> ( X = .0. -> P = Q ) ) )
15 14 3impia
 |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) /\ X C ( P .\/ Q ) ) -> ( X = .0. -> P = Q ) )
16 oveq1
 |-  ( P = Q -> ( P .\/ Q ) = ( Q .\/ Q ) )
17 16 breq2d
 |-  ( P = Q -> ( X C ( P .\/ Q ) <-> X C ( Q .\/ Q ) ) )
18 17 biimpac
 |-  ( ( X C ( P .\/ Q ) /\ P = Q ) -> X C ( Q .\/ Q ) )
19 simpr3
 |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> Q e. A )
20 2 5 hlatjidm
 |-  ( ( K e. HL /\ Q e. A ) -> ( Q .\/ Q ) = Q )
21 19 20 syldan
 |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( Q .\/ Q ) = Q )
22 21 breq2d
 |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( X C ( Q .\/ Q ) <-> X C Q ) )
23 hlatl
 |-  ( K e. HL -> K e. AtLat )
24 23 adantr
 |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> K e. AtLat )
25 simpr1
 |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> X e. B )
26 eqid
 |-  ( le ` K ) = ( le ` K )
27 1 26 3 4 5 atcvreq0
 |-  ( ( K e. AtLat /\ X e. B /\ Q e. A ) -> ( X C Q <-> X = .0. ) )
28 24 25 19 27 syl3anc
 |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( X C Q <-> X = .0. ) )
29 28 biimpd
 |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( X C Q -> X = .0. ) )
30 22 29 sylbid
 |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( X C ( Q .\/ Q ) -> X = .0. ) )
31 18 30 syl5
 |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( ( X C ( P .\/ Q ) /\ P = Q ) -> X = .0. ) )
32 31 expd
 |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( X C ( P .\/ Q ) -> ( P = Q -> X = .0. ) ) )
33 32 3impia
 |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) /\ X C ( P .\/ Q ) ) -> ( P = Q -> X = .0. ) )
34 15 33 impbid
 |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) /\ X C ( P .\/ Q ) ) -> ( X = .0. <-> P = Q ) )