Step |
Hyp |
Ref |
Expression |
1 |
|
atoml.1 |
|- A e. CH |
2 |
|
atcv1 |
|- ( ( ( A e. CH /\ B e. HAtoms /\ C e. HAtoms ) /\ A ( A = 0H <-> B = C ) ) |
3 |
1 2
|
mp3anl1 |
|- ( ( ( B e. HAtoms /\ C e. HAtoms ) /\ A ( A = 0H <-> B = C ) ) |
4 |
3
|
necon3abid |
|- ( ( ( B e. HAtoms /\ C e. HAtoms ) /\ A ( A =/= 0H <-> -. B = C ) ) |
5 |
|
atelch |
|- ( B e. HAtoms -> B e. CH ) |
6 |
|
atelch |
|- ( C e. HAtoms -> C e. CH ) |
7 |
|
chjcl |
|- ( ( B e. CH /\ C e. CH ) -> ( B vH C ) e. CH ) |
8 |
5 6 7
|
syl2an |
|- ( ( B e. HAtoms /\ C e. HAtoms ) -> ( B vH C ) e. CH ) |
9 |
|
cvpss |
|- ( ( A e. CH /\ ( B vH C ) e. CH ) -> ( A A C. ( B vH C ) ) ) |
10 |
1 8 9
|
sylancr |
|- ( ( B e. HAtoms /\ C e. HAtoms ) -> ( A A C. ( B vH C ) ) ) |
11 |
1
|
atcvati |
|- ( ( B e. HAtoms /\ C e. HAtoms ) -> ( ( A =/= 0H /\ A C. ( B vH C ) ) -> A e. HAtoms ) ) |
12 |
11
|
expcomd |
|- ( ( B e. HAtoms /\ C e. HAtoms ) -> ( A C. ( B vH C ) -> ( A =/= 0H -> A e. HAtoms ) ) ) |
13 |
10 12
|
syld |
|- ( ( B e. HAtoms /\ C e. HAtoms ) -> ( A ( A =/= 0H -> A e. HAtoms ) ) ) |
14 |
13
|
imp |
|- ( ( ( B e. HAtoms /\ C e. HAtoms ) /\ A ( A =/= 0H -> A e. HAtoms ) ) |
15 |
4 14
|
sylbird |
|- ( ( ( B e. HAtoms /\ C e. HAtoms ) /\ A ( -. B = C -> A e. HAtoms ) ) |
16 |
15
|
ex |
|- ( ( B e. HAtoms /\ C e. HAtoms ) -> ( A ( -. B = C -> A e. HAtoms ) ) ) |
17 |
16
|
com23 |
|- ( ( B e. HAtoms /\ C e. HAtoms ) -> ( -. B = C -> ( A A e. HAtoms ) ) ) |
18 |
17
|
impd |
|- ( ( B e. HAtoms /\ C e. HAtoms ) -> ( ( -. B = C /\ A A e. HAtoms ) ) |