Metamath Proof Explorer


Theorem atcvat2i

Description: A Hilbert lattice element covered by the join of two distinct atoms is an atom. (Contributed by NM, 26-Jun-2004) (New usage is discouraged.)

Ref Expression
Hypothesis atoml.1 AC
Assertion atcvat2i BHAtomsCHAtoms¬B=CABCAHAtoms

Proof

Step Hyp Ref Expression
1 atoml.1 AC
2 atcv1 ACBHAtomsCHAtomsABCA=0B=C
3 1 2 mp3anl1 BHAtomsCHAtomsABCA=0B=C
4 3 necon3abid BHAtomsCHAtomsABCA0¬B=C
5 atelch BHAtomsBC
6 atelch CHAtomsCC
7 chjcl BCCCBCC
8 5 6 7 syl2an BHAtomsCHAtomsBCC
9 cvpss ACBCCABCABC
10 1 8 9 sylancr BHAtomsCHAtomsABCABC
11 1 atcvati BHAtomsCHAtomsA0ABCAHAtoms
12 11 expcomd BHAtomsCHAtomsABCA0AHAtoms
13 10 12 syld BHAtomsCHAtomsABCA0AHAtoms
14 13 imp BHAtomsCHAtomsABCA0AHAtoms
15 4 14 sylbird BHAtomsCHAtomsABC¬B=CAHAtoms
16 15 ex BHAtomsCHAtomsABC¬B=CAHAtoms
17 16 com23 BHAtomsCHAtoms¬B=CABCAHAtoms
18 17 impd BHAtomsCHAtoms¬B=CABCAHAtoms