Metamath Proof Explorer


Theorem atcvat2i

Description: A Hilbert lattice element covered by the join of two distinct atoms is an atom. (Contributed by NM, 26-Jun-2004) (New usage is discouraged.)

Ref Expression
Hypothesis atoml.1 A C
Assertion atcvat2i B HAtoms C HAtoms ¬ B = C A B C A HAtoms

Proof

Step Hyp Ref Expression
1 atoml.1 A C
2 atcv1 A C B HAtoms C HAtoms A B C A = 0 B = C
3 1 2 mp3anl1 B HAtoms C HAtoms A B C A = 0 B = C
4 3 necon3abid B HAtoms C HAtoms A B C A 0 ¬ B = C
5 atelch B HAtoms B C
6 atelch C HAtoms C C
7 chjcl B C C C B C C
8 5 6 7 syl2an B HAtoms C HAtoms B C C
9 cvpss A C B C C A B C A B C
10 1 8 9 sylancr B HAtoms C HAtoms A B C A B C
11 1 atcvati B HAtoms C HAtoms A 0 A B C A HAtoms
12 11 expcomd B HAtoms C HAtoms A B C A 0 A HAtoms
13 10 12 syld B HAtoms C HAtoms A B C A 0 A HAtoms
14 13 imp B HAtoms C HAtoms A B C A 0 A HAtoms
15 4 14 sylbird B HAtoms C HAtoms A B C ¬ B = C A HAtoms
16 15 ex B HAtoms C HAtoms A B C ¬ B = C A HAtoms
17 16 com23 B HAtoms C HAtoms ¬ B = C A B C A HAtoms
18 17 impd B HAtoms C HAtoms ¬ B = C A B C A HAtoms