Step |
Hyp |
Ref |
Expression |
1 |
|
atoml.1 |
|- A e. CH |
2 |
1
|
atcvatlem |
|- ( ( ( B e. HAtoms /\ C e. HAtoms ) /\ ( A =/= 0H /\ A C. ( B vH C ) ) ) -> ( -. B C_ A -> A e. HAtoms ) ) |
3 |
|
atelch |
|- ( C e. HAtoms -> C e. CH ) |
4 |
|
atelch |
|- ( B e. HAtoms -> B e. CH ) |
5 |
|
chjcom |
|- ( ( C e. CH /\ B e. CH ) -> ( C vH B ) = ( B vH C ) ) |
6 |
3 4 5
|
syl2an |
|- ( ( C e. HAtoms /\ B e. HAtoms ) -> ( C vH B ) = ( B vH C ) ) |
7 |
6
|
psseq2d |
|- ( ( C e. HAtoms /\ B e. HAtoms ) -> ( A C. ( C vH B ) <-> A C. ( B vH C ) ) ) |
8 |
7
|
anbi2d |
|- ( ( C e. HAtoms /\ B e. HAtoms ) -> ( ( A =/= 0H /\ A C. ( C vH B ) ) <-> ( A =/= 0H /\ A C. ( B vH C ) ) ) ) |
9 |
1
|
atcvatlem |
|- ( ( ( C e. HAtoms /\ B e. HAtoms ) /\ ( A =/= 0H /\ A C. ( C vH B ) ) ) -> ( -. C C_ A -> A e. HAtoms ) ) |
10 |
9
|
ex |
|- ( ( C e. HAtoms /\ B e. HAtoms ) -> ( ( A =/= 0H /\ A C. ( C vH B ) ) -> ( -. C C_ A -> A e. HAtoms ) ) ) |
11 |
8 10
|
sylbird |
|- ( ( C e. HAtoms /\ B e. HAtoms ) -> ( ( A =/= 0H /\ A C. ( B vH C ) ) -> ( -. C C_ A -> A e. HAtoms ) ) ) |
12 |
11
|
ancoms |
|- ( ( B e. HAtoms /\ C e. HAtoms ) -> ( ( A =/= 0H /\ A C. ( B vH C ) ) -> ( -. C C_ A -> A e. HAtoms ) ) ) |
13 |
12
|
imp |
|- ( ( ( B e. HAtoms /\ C e. HAtoms ) /\ ( A =/= 0H /\ A C. ( B vH C ) ) ) -> ( -. C C_ A -> A e. HAtoms ) ) |
14 |
|
chlub |
|- ( ( B e. CH /\ C e. CH /\ A e. CH ) -> ( ( B C_ A /\ C C_ A ) <-> ( B vH C ) C_ A ) ) |
15 |
14
|
3comr |
|- ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( ( B C_ A /\ C C_ A ) <-> ( B vH C ) C_ A ) ) |
16 |
|
ssnpss |
|- ( ( B vH C ) C_ A -> -. A C. ( B vH C ) ) |
17 |
15 16
|
syl6bi |
|- ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( ( B C_ A /\ C C_ A ) -> -. A C. ( B vH C ) ) ) |
18 |
17
|
con2d |
|- ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( A C. ( B vH C ) -> -. ( B C_ A /\ C C_ A ) ) ) |
19 |
|
ianor |
|- ( -. ( B C_ A /\ C C_ A ) <-> ( -. B C_ A \/ -. C C_ A ) ) |
20 |
18 19
|
syl6ib |
|- ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( A C. ( B vH C ) -> ( -. B C_ A \/ -. C C_ A ) ) ) |
21 |
1 20
|
mp3an1 |
|- ( ( B e. CH /\ C e. CH ) -> ( A C. ( B vH C ) -> ( -. B C_ A \/ -. C C_ A ) ) ) |
22 |
4 3 21
|
syl2an |
|- ( ( B e. HAtoms /\ C e. HAtoms ) -> ( A C. ( B vH C ) -> ( -. B C_ A \/ -. C C_ A ) ) ) |
23 |
22
|
imp |
|- ( ( ( B e. HAtoms /\ C e. HAtoms ) /\ A C. ( B vH C ) ) -> ( -. B C_ A \/ -. C C_ A ) ) |
24 |
23
|
adantrl |
|- ( ( ( B e. HAtoms /\ C e. HAtoms ) /\ ( A =/= 0H /\ A C. ( B vH C ) ) ) -> ( -. B C_ A \/ -. C C_ A ) ) |
25 |
2 13 24
|
mpjaod |
|- ( ( ( B e. HAtoms /\ C e. HAtoms ) /\ ( A =/= 0H /\ A C. ( B vH C ) ) ) -> A e. HAtoms ) |
26 |
25
|
ex |
|- ( ( B e. HAtoms /\ C e. HAtoms ) -> ( ( A =/= 0H /\ A C. ( B vH C ) ) -> A e. HAtoms ) ) |