Step |
Hyp |
Ref |
Expression |
1 |
|
atoml.1 |
|- A e. CH |
2 |
1
|
hatomici |
|- ( A =/= 0H -> E. x e. HAtoms x C_ A ) |
3 |
|
nssne2 |
|- ( ( x C_ A /\ -. B C_ A ) -> x =/= B ) |
4 |
3
|
adantrl |
|- ( ( x C_ A /\ ( A C. ( B vH C ) /\ -. B C_ A ) ) -> x =/= B ) |
5 |
|
atnemeq0 |
|- ( ( x e. HAtoms /\ B e. HAtoms ) -> ( x =/= B <-> ( x i^i B ) = 0H ) ) |
6 |
4 5
|
syl5ib |
|- ( ( x e. HAtoms /\ B e. HAtoms ) -> ( ( x C_ A /\ ( A C. ( B vH C ) /\ -. B C_ A ) ) -> ( x i^i B ) = 0H ) ) |
7 |
|
atelch |
|- ( x e. HAtoms -> x e. CH ) |
8 |
|
cvp |
|- ( ( x e. CH /\ B e. HAtoms ) -> ( ( x i^i B ) = 0H <-> x |
9 |
|
atelch |
|- ( B e. HAtoms -> B e. CH ) |
10 |
|
chjcom |
|- ( ( x e. CH /\ B e. CH ) -> ( x vH B ) = ( B vH x ) ) |
11 |
9 10
|
sylan2 |
|- ( ( x e. CH /\ B e. HAtoms ) -> ( x vH B ) = ( B vH x ) ) |
12 |
11
|
breq2d |
|- ( ( x e. CH /\ B e. HAtoms ) -> ( x x |
13 |
8 12
|
bitrd |
|- ( ( x e. CH /\ B e. HAtoms ) -> ( ( x i^i B ) = 0H <-> x |
14 |
7 13
|
sylan |
|- ( ( x e. HAtoms /\ B e. HAtoms ) -> ( ( x i^i B ) = 0H <-> x |
15 |
6 14
|
sylibd |
|- ( ( x e. HAtoms /\ B e. HAtoms ) -> ( ( x C_ A /\ ( A C. ( B vH C ) /\ -. B C_ A ) ) -> x |
16 |
15
|
ancoms |
|- ( ( B e. HAtoms /\ x e. HAtoms ) -> ( ( x C_ A /\ ( A C. ( B vH C ) /\ -. B C_ A ) ) -> x |
17 |
16
|
adantlr |
|- ( ( ( B e. HAtoms /\ C e. HAtoms ) /\ x e. HAtoms ) -> ( ( x C_ A /\ ( A C. ( B vH C ) /\ -. B C_ A ) ) -> x |
18 |
17
|
imp |
|- ( ( ( ( B e. HAtoms /\ C e. HAtoms ) /\ x e. HAtoms ) /\ ( x C_ A /\ ( A C. ( B vH C ) /\ -. B C_ A ) ) ) -> x |
19 |
|
chub1 |
|- ( ( B e. CH /\ x e. CH ) -> B C_ ( B vH x ) ) |
20 |
9 7 19
|
syl2an |
|- ( ( B e. HAtoms /\ x e. HAtoms ) -> B C_ ( B vH x ) ) |
21 |
20
|
3adant3 |
|- ( ( B e. HAtoms /\ x e. HAtoms /\ C e. HAtoms ) -> B C_ ( B vH x ) ) |
22 |
21
|
adantr |
|- ( ( ( B e. HAtoms /\ x e. HAtoms /\ C e. HAtoms ) /\ ( ( x C_ A /\ -. B C_ A ) /\ A C. ( B vH C ) ) ) -> B C_ ( B vH x ) ) |
23 |
|
pssss |
|- ( A C. ( B vH C ) -> A C_ ( B vH C ) ) |
24 |
|
sstr |
|- ( ( x C_ A /\ A C_ ( B vH C ) ) -> x C_ ( B vH C ) ) |
25 |
23 24
|
sylan2 |
|- ( ( x C_ A /\ A C. ( B vH C ) ) -> x C_ ( B vH C ) ) |
26 |
25
|
adantlr |
|- ( ( ( x C_ A /\ -. B C_ A ) /\ A C. ( B vH C ) ) -> x C_ ( B vH C ) ) |
27 |
26
|
adantl |
|- ( ( ( B e. HAtoms /\ x e. HAtoms /\ C e. HAtoms ) /\ ( ( x C_ A /\ -. B C_ A ) /\ A C. ( B vH C ) ) ) -> x C_ ( B vH C ) ) |
28 |
|
incom |
|- ( B i^i x ) = ( x i^i B ) |
29 |
3 5
|
syl5ib |
|- ( ( x e. HAtoms /\ B e. HAtoms ) -> ( ( x C_ A /\ -. B C_ A ) -> ( x i^i B ) = 0H ) ) |
30 |
29
|
ancoms |
|- ( ( B e. HAtoms /\ x e. HAtoms ) -> ( ( x C_ A /\ -. B C_ A ) -> ( x i^i B ) = 0H ) ) |
31 |
30
|
3adant3 |
|- ( ( B e. HAtoms /\ x e. HAtoms /\ C e. HAtoms ) -> ( ( x C_ A /\ -. B C_ A ) -> ( x i^i B ) = 0H ) ) |
32 |
31
|
imp |
|- ( ( ( B e. HAtoms /\ x e. HAtoms /\ C e. HAtoms ) /\ ( x C_ A /\ -. B C_ A ) ) -> ( x i^i B ) = 0H ) |
33 |
28 32
|
eqtrid |
|- ( ( ( B e. HAtoms /\ x e. HAtoms /\ C e. HAtoms ) /\ ( x C_ A /\ -. B C_ A ) ) -> ( B i^i x ) = 0H ) |
34 |
33
|
adantrr |
|- ( ( ( B e. HAtoms /\ x e. HAtoms /\ C e. HAtoms ) /\ ( ( x C_ A /\ -. B C_ A ) /\ A C. ( B vH C ) ) ) -> ( B i^i x ) = 0H ) |
35 |
|
atexch |
|- ( ( B e. CH /\ x e. HAtoms /\ C e. HAtoms ) -> ( ( x C_ ( B vH C ) /\ ( B i^i x ) = 0H ) -> C C_ ( B vH x ) ) ) |
36 |
9 35
|
syl3an1 |
|- ( ( B e. HAtoms /\ x e. HAtoms /\ C e. HAtoms ) -> ( ( x C_ ( B vH C ) /\ ( B i^i x ) = 0H ) -> C C_ ( B vH x ) ) ) |
37 |
36
|
adantr |
|- ( ( ( B e. HAtoms /\ x e. HAtoms /\ C e. HAtoms ) /\ ( ( x C_ A /\ -. B C_ A ) /\ A C. ( B vH C ) ) ) -> ( ( x C_ ( B vH C ) /\ ( B i^i x ) = 0H ) -> C C_ ( B vH x ) ) ) |
38 |
27 34 37
|
mp2and |
|- ( ( ( B e. HAtoms /\ x e. HAtoms /\ C e. HAtoms ) /\ ( ( x C_ A /\ -. B C_ A ) /\ A C. ( B vH C ) ) ) -> C C_ ( B vH x ) ) |
39 |
|
atelch |
|- ( C e. HAtoms -> C e. CH ) |
40 |
|
simp1 |
|- ( ( B e. CH /\ x e. CH /\ C e. CH ) -> B e. CH ) |
41 |
|
simp3 |
|- ( ( B e. CH /\ x e. CH /\ C e. CH ) -> C e. CH ) |
42 |
|
chjcl |
|- ( ( B e. CH /\ x e. CH ) -> ( B vH x ) e. CH ) |
43 |
42
|
3adant3 |
|- ( ( B e. CH /\ x e. CH /\ C e. CH ) -> ( B vH x ) e. CH ) |
44 |
40 41 43
|
3jca |
|- ( ( B e. CH /\ x e. CH /\ C e. CH ) -> ( B e. CH /\ C e. CH /\ ( B vH x ) e. CH ) ) |
45 |
9 7 39 44
|
syl3an |
|- ( ( B e. HAtoms /\ x e. HAtoms /\ C e. HAtoms ) -> ( B e. CH /\ C e. CH /\ ( B vH x ) e. CH ) ) |
46 |
|
chlub |
|- ( ( B e. CH /\ C e. CH /\ ( B vH x ) e. CH ) -> ( ( B C_ ( B vH x ) /\ C C_ ( B vH x ) ) <-> ( B vH C ) C_ ( B vH x ) ) ) |
47 |
45 46
|
syl |
|- ( ( B e. HAtoms /\ x e. HAtoms /\ C e. HAtoms ) -> ( ( B C_ ( B vH x ) /\ C C_ ( B vH x ) ) <-> ( B vH C ) C_ ( B vH x ) ) ) |
48 |
47
|
adantr |
|- ( ( ( B e. HAtoms /\ x e. HAtoms /\ C e. HAtoms ) /\ ( ( x C_ A /\ -. B C_ A ) /\ A C. ( B vH C ) ) ) -> ( ( B C_ ( B vH x ) /\ C C_ ( B vH x ) ) <-> ( B vH C ) C_ ( B vH x ) ) ) |
49 |
22 38 48
|
mpbi2and |
|- ( ( ( B e. HAtoms /\ x e. HAtoms /\ C e. HAtoms ) /\ ( ( x C_ A /\ -. B C_ A ) /\ A C. ( B vH C ) ) ) -> ( B vH C ) C_ ( B vH x ) ) |
50 |
|
chub1 |
|- ( ( B e. CH /\ C e. CH ) -> B C_ ( B vH C ) ) |
51 |
50
|
3adant2 |
|- ( ( B e. CH /\ x e. CH /\ C e. CH ) -> B C_ ( B vH C ) ) |
52 |
51 26
|
anim12i |
|- ( ( ( B e. CH /\ x e. CH /\ C e. CH ) /\ ( ( x C_ A /\ -. B C_ A ) /\ A C. ( B vH C ) ) ) -> ( B C_ ( B vH C ) /\ x C_ ( B vH C ) ) ) |
53 |
|
chjcl |
|- ( ( B e. CH /\ C e. CH ) -> ( B vH C ) e. CH ) |
54 |
53
|
3adant2 |
|- ( ( B e. CH /\ x e. CH /\ C e. CH ) -> ( B vH C ) e. CH ) |
55 |
|
chlub |
|- ( ( B e. CH /\ x e. CH /\ ( B vH C ) e. CH ) -> ( ( B C_ ( B vH C ) /\ x C_ ( B vH C ) ) <-> ( B vH x ) C_ ( B vH C ) ) ) |
56 |
54 55
|
syld3an3 |
|- ( ( B e. CH /\ x e. CH /\ C e. CH ) -> ( ( B C_ ( B vH C ) /\ x C_ ( B vH C ) ) <-> ( B vH x ) C_ ( B vH C ) ) ) |
57 |
56
|
adantr |
|- ( ( ( B e. CH /\ x e. CH /\ C e. CH ) /\ ( ( x C_ A /\ -. B C_ A ) /\ A C. ( B vH C ) ) ) -> ( ( B C_ ( B vH C ) /\ x C_ ( B vH C ) ) <-> ( B vH x ) C_ ( B vH C ) ) ) |
58 |
52 57
|
mpbid |
|- ( ( ( B e. CH /\ x e. CH /\ C e. CH ) /\ ( ( x C_ A /\ -. B C_ A ) /\ A C. ( B vH C ) ) ) -> ( B vH x ) C_ ( B vH C ) ) |
59 |
9 7 39 58
|
syl3anl |
|- ( ( ( B e. HAtoms /\ x e. HAtoms /\ C e. HAtoms ) /\ ( ( x C_ A /\ -. B C_ A ) /\ A C. ( B vH C ) ) ) -> ( B vH x ) C_ ( B vH C ) ) |
60 |
49 59
|
eqssd |
|- ( ( ( B e. HAtoms /\ x e. HAtoms /\ C e. HAtoms ) /\ ( ( x C_ A /\ -. B C_ A ) /\ A C. ( B vH C ) ) ) -> ( B vH C ) = ( B vH x ) ) |
61 |
60
|
anassrs |
|- ( ( ( ( B e. HAtoms /\ x e. HAtoms /\ C e. HAtoms ) /\ ( x C_ A /\ -. B C_ A ) ) /\ A C. ( B vH C ) ) -> ( B vH C ) = ( B vH x ) ) |
62 |
61
|
psseq2d |
|- ( ( ( ( B e. HAtoms /\ x e. HAtoms /\ C e. HAtoms ) /\ ( x C_ A /\ -. B C_ A ) ) /\ A C. ( B vH C ) ) -> ( A C. ( B vH C ) <-> A C. ( B vH x ) ) ) |
63 |
62
|
ex |
|- ( ( ( B e. HAtoms /\ x e. HAtoms /\ C e. HAtoms ) /\ ( x C_ A /\ -. B C_ A ) ) -> ( A C. ( B vH C ) -> ( A C. ( B vH C ) <-> A C. ( B vH x ) ) ) ) |
64 |
63
|
ibd |
|- ( ( ( B e. HAtoms /\ x e. HAtoms /\ C e. HAtoms ) /\ ( x C_ A /\ -. B C_ A ) ) -> ( A C. ( B vH C ) -> A C. ( B vH x ) ) ) |
65 |
64
|
exp32 |
|- ( ( B e. HAtoms /\ x e. HAtoms /\ C e. HAtoms ) -> ( x C_ A -> ( -. B C_ A -> ( A C. ( B vH C ) -> A C. ( B vH x ) ) ) ) ) |
66 |
65
|
3expa |
|- ( ( ( B e. HAtoms /\ x e. HAtoms ) /\ C e. HAtoms ) -> ( x C_ A -> ( -. B C_ A -> ( A C. ( B vH C ) -> A C. ( B vH x ) ) ) ) ) |
67 |
66
|
an32s |
|- ( ( ( B e. HAtoms /\ C e. HAtoms ) /\ x e. HAtoms ) -> ( x C_ A -> ( -. B C_ A -> ( A C. ( B vH C ) -> A C. ( B vH x ) ) ) ) ) |
68 |
67
|
com34 |
|- ( ( ( B e. HAtoms /\ C e. HAtoms ) /\ x e. HAtoms ) -> ( x C_ A -> ( A C. ( B vH C ) -> ( -. B C_ A -> A C. ( B vH x ) ) ) ) ) |
69 |
68
|
imp45 |
|- ( ( ( ( B e. HAtoms /\ C e. HAtoms ) /\ x e. HAtoms ) /\ ( x C_ A /\ ( A C. ( B vH C ) /\ -. B C_ A ) ) ) -> A C. ( B vH x ) ) |
70 |
|
simpr |
|- ( ( B e. CH /\ x e. CH ) -> x e. CH ) |
71 |
70 42
|
jca |
|- ( ( B e. CH /\ x e. CH ) -> ( x e. CH /\ ( B vH x ) e. CH ) ) |
72 |
9 7 71
|
syl2an |
|- ( ( B e. HAtoms /\ x e. HAtoms ) -> ( x e. CH /\ ( B vH x ) e. CH ) ) |
73 |
|
cvnbtwn3 |
|- ( ( x e. CH /\ ( B vH x ) e. CH /\ A e. CH ) -> ( x ( ( x C_ A /\ A C. ( B vH x ) ) -> A = x ) ) ) |
74 |
1 73
|
mp3an3 |
|- ( ( x e. CH /\ ( B vH x ) e. CH ) -> ( x ( ( x C_ A /\ A C. ( B vH x ) ) -> A = x ) ) ) |
75 |
74
|
exp4a |
|- ( ( x e. CH /\ ( B vH x ) e. CH ) -> ( x ( x C_ A -> ( A C. ( B vH x ) -> A = x ) ) ) ) |
76 |
75
|
com23 |
|- ( ( x e. CH /\ ( B vH x ) e. CH ) -> ( x C_ A -> ( x ( A C. ( B vH x ) -> A = x ) ) ) ) |
77 |
76
|
imp4a |
|- ( ( x e. CH /\ ( B vH x ) e. CH ) -> ( x C_ A -> ( ( x A = x ) ) ) |
78 |
72 77
|
syl |
|- ( ( B e. HAtoms /\ x e. HAtoms ) -> ( x C_ A -> ( ( x A = x ) ) ) |
79 |
78
|
adantlr |
|- ( ( ( B e. HAtoms /\ C e. HAtoms ) /\ x e. HAtoms ) -> ( x C_ A -> ( ( x A = x ) ) ) |
80 |
79
|
imp |
|- ( ( ( ( B e. HAtoms /\ C e. HAtoms ) /\ x e. HAtoms ) /\ x C_ A ) -> ( ( x A = x ) ) |
81 |
80
|
adantrr |
|- ( ( ( ( B e. HAtoms /\ C e. HAtoms ) /\ x e. HAtoms ) /\ ( x C_ A /\ ( A C. ( B vH C ) /\ -. B C_ A ) ) ) -> ( ( x A = x ) ) |
82 |
18 69 81
|
mp2and |
|- ( ( ( ( B e. HAtoms /\ C e. HAtoms ) /\ x e. HAtoms ) /\ ( x C_ A /\ ( A C. ( B vH C ) /\ -. B C_ A ) ) ) -> A = x ) |
83 |
82
|
eleq1d |
|- ( ( ( ( B e. HAtoms /\ C e. HAtoms ) /\ x e. HAtoms ) /\ ( x C_ A /\ ( A C. ( B vH C ) /\ -. B C_ A ) ) ) -> ( A e. HAtoms <-> x e. HAtoms ) ) |
84 |
83
|
biimprcd |
|- ( x e. HAtoms -> ( ( ( ( B e. HAtoms /\ C e. HAtoms ) /\ x e. HAtoms ) /\ ( x C_ A /\ ( A C. ( B vH C ) /\ -. B C_ A ) ) ) -> A e. HAtoms ) ) |
85 |
84
|
exp4c |
|- ( x e. HAtoms -> ( ( B e. HAtoms /\ C e. HAtoms ) -> ( x e. HAtoms -> ( ( x C_ A /\ ( A C. ( B vH C ) /\ -. B C_ A ) ) -> A e. HAtoms ) ) ) ) |
86 |
85
|
pm2.43b |
|- ( ( B e. HAtoms /\ C e. HAtoms ) -> ( x e. HAtoms -> ( ( x C_ A /\ ( A C. ( B vH C ) /\ -. B C_ A ) ) -> A e. HAtoms ) ) ) |
87 |
86
|
imp |
|- ( ( ( B e. HAtoms /\ C e. HAtoms ) /\ x e. HAtoms ) -> ( ( x C_ A /\ ( A C. ( B vH C ) /\ -. B C_ A ) ) -> A e. HAtoms ) ) |
88 |
87
|
exp4d |
|- ( ( ( B e. HAtoms /\ C e. HAtoms ) /\ x e. HAtoms ) -> ( x C_ A -> ( A C. ( B vH C ) -> ( -. B C_ A -> A e. HAtoms ) ) ) ) |
89 |
88
|
rexlimdva |
|- ( ( B e. HAtoms /\ C e. HAtoms ) -> ( E. x e. HAtoms x C_ A -> ( A C. ( B vH C ) -> ( -. B C_ A -> A e. HAtoms ) ) ) ) |
90 |
2 89
|
syl5 |
|- ( ( B e. HAtoms /\ C e. HAtoms ) -> ( A =/= 0H -> ( A C. ( B vH C ) -> ( -. B C_ A -> A e. HAtoms ) ) ) ) |
91 |
90
|
imp32 |
|- ( ( ( B e. HAtoms /\ C e. HAtoms ) /\ ( A =/= 0H /\ A C. ( B vH C ) ) ) -> ( -. B C_ A -> A e. HAtoms ) ) |