Step |
Hyp |
Ref |
Expression |
1 |
|
atoml.1 |
|
2 |
1
|
hatomici |
|
3 |
|
nssne2 |
|
4 |
3
|
adantrl |
|
5 |
|
atnemeq0 |
|
6 |
4 5
|
syl5ib |
|
7 |
|
atelch |
|
8 |
|
cvp |
|
9 |
|
atelch |
|
10 |
|
chjcom |
|
11 |
9 10
|
sylan2 |
|
12 |
11
|
breq2d |
|
13 |
8 12
|
bitrd |
|
14 |
7 13
|
sylan |
|
15 |
6 14
|
sylibd |
|
16 |
15
|
ancoms |
|
17 |
16
|
adantlr |
|
18 |
17
|
imp |
|
19 |
|
chub1 |
|
20 |
9 7 19
|
syl2an |
|
21 |
20
|
3adant3 |
|
22 |
21
|
adantr |
|
23 |
|
pssss |
|
24 |
|
sstr |
|
25 |
23 24
|
sylan2 |
|
26 |
25
|
adantlr |
|
27 |
26
|
adantl |
|
28 |
|
incom |
|
29 |
3 5
|
syl5ib |
|
30 |
29
|
ancoms |
|
31 |
30
|
3adant3 |
|
32 |
31
|
imp |
|
33 |
28 32
|
eqtrid |
|
34 |
33
|
adantrr |
|
35 |
|
atexch |
|
36 |
9 35
|
syl3an1 |
|
37 |
36
|
adantr |
|
38 |
27 34 37
|
mp2and |
|
39 |
|
atelch |
|
40 |
|
simp1 |
|
41 |
|
simp3 |
|
42 |
|
chjcl |
|
43 |
42
|
3adant3 |
|
44 |
40 41 43
|
3jca |
|
45 |
9 7 39 44
|
syl3an |
|
46 |
|
chlub |
|
47 |
45 46
|
syl |
|
48 |
47
|
adantr |
|
49 |
22 38 48
|
mpbi2and |
|
50 |
|
chub1 |
|
51 |
50
|
3adant2 |
|
52 |
51 26
|
anim12i |
|
53 |
|
chjcl |
|
54 |
53
|
3adant2 |
|
55 |
|
chlub |
|
56 |
54 55
|
syld3an3 |
|
57 |
56
|
adantr |
|
58 |
52 57
|
mpbid |
|
59 |
9 7 39 58
|
syl3anl |
|
60 |
49 59
|
eqssd |
|
61 |
60
|
anassrs |
|
62 |
61
|
psseq2d |
|
63 |
62
|
ex |
|
64 |
63
|
ibd |
|
65 |
64
|
exp32 |
|
66 |
65
|
3expa |
|
67 |
66
|
an32s |
|
68 |
67
|
com34 |
|
69 |
68
|
imp45 |
|
70 |
|
simpr |
|
71 |
70 42
|
jca |
|
72 |
9 7 71
|
syl2an |
|
73 |
|
cvnbtwn3 |
|
74 |
1 73
|
mp3an3 |
|
75 |
74
|
exp4a |
|
76 |
75
|
com23 |
|
77 |
76
|
imp4a |
|
78 |
72 77
|
syl |
|
79 |
78
|
adantlr |
|
80 |
79
|
imp |
|
81 |
80
|
adantrr |
|
82 |
18 69 81
|
mp2and |
|
83 |
82
|
eleq1d |
|
84 |
83
|
biimprcd |
|
85 |
84
|
exp4c |
|
86 |
85
|
pm2.43b |
|
87 |
86
|
imp |
|
88 |
87
|
exp4d |
|
89 |
88
|
rexlimdva |
|
90 |
2 89
|
syl5 |
|
91 |
90
|
imp32 |
|