Metamath Proof Explorer


Theorem atcvatlem

Description: Lemma for atcvati . (Contributed by NM, 27-Jun-2004) (New usage is discouraged.)

Ref Expression
Hypothesis atoml.1 A C
Assertion atcvatlem B HAtoms C HAtoms A 0 A B C ¬ B A A HAtoms

Proof

Step Hyp Ref Expression
1 atoml.1 A C
2 1 hatomici A 0 x HAtoms x A
3 nssne2 x A ¬ B A x B
4 3 adantrl x A A B C ¬ B A x B
5 atnemeq0 x HAtoms B HAtoms x B x B = 0
6 4 5 syl5ib x HAtoms B HAtoms x A A B C ¬ B A x B = 0
7 atelch x HAtoms x C
8 cvp x C B HAtoms x B = 0 x x B
9 atelch B HAtoms B C
10 chjcom x C B C x B = B x
11 9 10 sylan2 x C B HAtoms x B = B x
12 11 breq2d x C B HAtoms x x B x B x
13 8 12 bitrd x C B HAtoms x B = 0 x B x
14 7 13 sylan x HAtoms B HAtoms x B = 0 x B x
15 6 14 sylibd x HAtoms B HAtoms x A A B C ¬ B A x B x
16 15 ancoms B HAtoms x HAtoms x A A B C ¬ B A x B x
17 16 adantlr B HAtoms C HAtoms x HAtoms x A A B C ¬ B A x B x
18 17 imp B HAtoms C HAtoms x HAtoms x A A B C ¬ B A x B x
19 chub1 B C x C B B x
20 9 7 19 syl2an B HAtoms x HAtoms B B x
21 20 3adant3 B HAtoms x HAtoms C HAtoms B B x
22 21 adantr B HAtoms x HAtoms C HAtoms x A ¬ B A A B C B B x
23 pssss A B C A B C
24 sstr x A A B C x B C
25 23 24 sylan2 x A A B C x B C
26 25 adantlr x A ¬ B A A B C x B C
27 26 adantl B HAtoms x HAtoms C HAtoms x A ¬ B A A B C x B C
28 incom B x = x B
29 3 5 syl5ib x HAtoms B HAtoms x A ¬ B A x B = 0
30 29 ancoms B HAtoms x HAtoms x A ¬ B A x B = 0
31 30 3adant3 B HAtoms x HAtoms C HAtoms x A ¬ B A x B = 0
32 31 imp B HAtoms x HAtoms C HAtoms x A ¬ B A x B = 0
33 28 32 eqtrid B HAtoms x HAtoms C HAtoms x A ¬ B A B x = 0
34 33 adantrr B HAtoms x HAtoms C HAtoms x A ¬ B A A B C B x = 0
35 atexch B C x HAtoms C HAtoms x B C B x = 0 C B x
36 9 35 syl3an1 B HAtoms x HAtoms C HAtoms x B C B x = 0 C B x
37 36 adantr B HAtoms x HAtoms C HAtoms x A ¬ B A A B C x B C B x = 0 C B x
38 27 34 37 mp2and B HAtoms x HAtoms C HAtoms x A ¬ B A A B C C B x
39 atelch C HAtoms C C
40 simp1 B C x C C C B C
41 simp3 B C x C C C C C
42 chjcl B C x C B x C
43 42 3adant3 B C x C C C B x C
44 40 41 43 3jca B C x C C C B C C C B x C
45 9 7 39 44 syl3an B HAtoms x HAtoms C HAtoms B C C C B x C
46 chlub B C C C B x C B B x C B x B C B x
47 45 46 syl B HAtoms x HAtoms C HAtoms B B x C B x B C B x
48 47 adantr B HAtoms x HAtoms C HAtoms x A ¬ B A A B C B B x C B x B C B x
49 22 38 48 mpbi2and B HAtoms x HAtoms C HAtoms x A ¬ B A A B C B C B x
50 chub1 B C C C B B C
51 50 3adant2 B C x C C C B B C
52 51 26 anim12i B C x C C C x A ¬ B A A B C B B C x B C
53 chjcl B C C C B C C
54 53 3adant2 B C x C C C B C C
55 chlub B C x C B C C B B C x B C B x B C
56 54 55 syld3an3 B C x C C C B B C x B C B x B C
57 56 adantr B C x C C C x A ¬ B A A B C B B C x B C B x B C
58 52 57 mpbid B C x C C C x A ¬ B A A B C B x B C
59 9 7 39 58 syl3anl B HAtoms x HAtoms C HAtoms x A ¬ B A A B C B x B C
60 49 59 eqssd B HAtoms x HAtoms C HAtoms x A ¬ B A A B C B C = B x
61 60 anassrs B HAtoms x HAtoms C HAtoms x A ¬ B A A B C B C = B x
62 61 psseq2d B HAtoms x HAtoms C HAtoms x A ¬ B A A B C A B C A B x
63 62 ex B HAtoms x HAtoms C HAtoms x A ¬ B A A B C A B C A B x
64 63 ibd B HAtoms x HAtoms C HAtoms x A ¬ B A A B C A B x
65 64 exp32 B HAtoms x HAtoms C HAtoms x A ¬ B A A B C A B x
66 65 3expa B HAtoms x HAtoms C HAtoms x A ¬ B A A B C A B x
67 66 an32s B HAtoms C HAtoms x HAtoms x A ¬ B A A B C A B x
68 67 com34 B HAtoms C HAtoms x HAtoms x A A B C ¬ B A A B x
69 68 imp45 B HAtoms C HAtoms x HAtoms x A A B C ¬ B A A B x
70 simpr B C x C x C
71 70 42 jca B C x C x C B x C
72 9 7 71 syl2an B HAtoms x HAtoms x C B x C
73 cvnbtwn3 x C B x C A C x B x x A A B x A = x
74 1 73 mp3an3 x C B x C x B x x A A B x A = x
75 74 exp4a x C B x C x B x x A A B x A = x
76 75 com23 x C B x C x A x B x A B x A = x
77 76 imp4a x C B x C x A x B x A B x A = x
78 72 77 syl B HAtoms x HAtoms x A x B x A B x A = x
79 78 adantlr B HAtoms C HAtoms x HAtoms x A x B x A B x A = x
80 79 imp B HAtoms C HAtoms x HAtoms x A x B x A B x A = x
81 80 adantrr B HAtoms C HAtoms x HAtoms x A A B C ¬ B A x B x A B x A = x
82 18 69 81 mp2and B HAtoms C HAtoms x HAtoms x A A B C ¬ B A A = x
83 82 eleq1d B HAtoms C HAtoms x HAtoms x A A B C ¬ B A A HAtoms x HAtoms
84 83 biimprcd x HAtoms B HAtoms C HAtoms x HAtoms x A A B C ¬ B A A HAtoms
85 84 exp4c x HAtoms B HAtoms C HAtoms x HAtoms x A A B C ¬ B A A HAtoms
86 85 pm2.43b B HAtoms C HAtoms x HAtoms x A A B C ¬ B A A HAtoms
87 86 imp B HAtoms C HAtoms x HAtoms x A A B C ¬ B A A HAtoms
88 87 exp4d B HAtoms C HAtoms x HAtoms x A A B C ¬ B A A HAtoms
89 88 rexlimdva B HAtoms C HAtoms x HAtoms x A A B C ¬ B A A HAtoms
90 2 89 syl5 B HAtoms C HAtoms A 0 A B C ¬ B A A HAtoms
91 90 imp32 B HAtoms C HAtoms A 0 A B C ¬ B A A HAtoms