Description: A Hilbert lattice has the exchange property. (Contributed by NM, 13-Nov-2011)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hlsuprexch.b | |- B = ( Base ` K ) |
|
hlsuprexch.l | |- .<_ = ( le ` K ) |
||
hlsuprexch.j | |- .\/ = ( join ` K ) |
||
hlsuprexch.a | |- A = ( Atoms ` K ) |
||
Assertion | hlexch1 | |- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ X e. B ) /\ -. P .<_ X ) -> ( P .<_ ( X .\/ Q ) -> Q .<_ ( X .\/ P ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlsuprexch.b | |- B = ( Base ` K ) |
|
2 | hlsuprexch.l | |- .<_ = ( le ` K ) |
|
3 | hlsuprexch.j | |- .\/ = ( join ` K ) |
|
4 | hlsuprexch.a | |- A = ( Atoms ` K ) |
|
5 | hlcvl | |- ( K e. HL -> K e. CvLat ) |
|
6 | 1 2 3 4 | cvlexch1 | |- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ X e. B ) /\ -. P .<_ X ) -> ( P .<_ ( X .\/ Q ) -> Q .<_ ( X .\/ P ) ) ) |
7 | 5 6 | syl3an1 | |- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ X e. B ) /\ -. P .<_ X ) -> ( P .<_ ( X .\/ Q ) -> Q .<_ ( X .\/ P ) ) ) |