Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg46.b |
|
2 |
|
cdlemg46.h |
|
3 |
|
cdlemg46.t |
|
4 |
|
cdlemg46.r |
|
5 |
|
simp11 |
|
6 |
|
simp2l |
|
7 |
|
simp12 |
|
8 |
2 3
|
ltrnco |
|
9 |
5 6 7 8
|
syl3anc |
|
10 |
|
simp13 |
|
11 |
|
simp3 |
|
12 |
1 2 3 4
|
cdlemg46 |
|
13 |
5 7 6 11 12
|
syl121anc |
|
14 |
|
simp2r |
|
15 |
13 14
|
neeqtrd |
|
16 |
2 3 4
|
cdlemg44 |
|
17 |
5 9 10 15 16
|
syl121anc |
|
18 |
|
coass |
|
19 |
17 18
|
eqtr4di |
|
20 |
|
simp33 |
|
21 |
20 14
|
neeqtrd |
|
22 |
2 3 4
|
cdlemg44 |
|
23 |
5 6 10 21 22
|
syl121anc |
|
24 |
23
|
coeq1d |
|
25 |
19 24
|
eqtr4d |
|
26 |
|
coass |
|
27 |
|
coass |
|
28 |
25 26 27
|
3eqtr3g |
|
29 |
28
|
coeq2d |
|
30 |
|
coass |
|
31 |
1 2 3
|
ltrn1o |
|
32 |
5 6 31
|
syl2anc |
|
33 |
|
f1ococnv1 |
|
34 |
32 33
|
syl |
|
35 |
34
|
coeq1d |
|
36 |
30 35
|
eqtr3id |
|
37 |
2 3
|
ltrnco |
|
38 |
5 7 10 37
|
syl3anc |
|
39 |
1 2 3
|
ltrn1o |
|
40 |
5 38 39
|
syl2anc |
|
41 |
|
f1of |
|
42 |
|
fcoi2 |
|
43 |
40 41 42
|
3syl |
|
44 |
36 43
|
eqtrd |
|
45 |
|
coass |
|
46 |
34
|
coeq1d |
|
47 |
45 46
|
eqtr3id |
|
48 |
2 3
|
ltrnco |
|
49 |
5 10 7 48
|
syl3anc |
|
50 |
1 2 3
|
ltrn1o |
|
51 |
5 49 50
|
syl2anc |
|
52 |
|
f1of |
|
53 |
|
fcoi2 |
|
54 |
51 52 53
|
3syl |
|
55 |
47 54
|
eqtrd |
|
56 |
29 44 55
|
3eqtr3d |
|