Metamath Proof Explorer


Theorem cdlemg47

Description: Part of proof of Lemma G of Crawley p. 116, ninth line of third paragraph on p. 117: "we conclude that gf = fg." (Contributed by NM, 5-Jun-2013)

Ref Expression
Hypotheses cdlemg46.b B=BaseK
cdlemg46.h H=LHypK
cdlemg46.t T=LTrnKW
cdlemg46.r R=trLKW
Assertion cdlemg47 KHLWHFTGThTRF=RGFIBhIBRhRFFG=GF

Proof

Step Hyp Ref Expression
1 cdlemg46.b B=BaseK
2 cdlemg46.h H=LHypK
3 cdlemg46.t T=LTrnKW
4 cdlemg46.r R=trLKW
5 simp11 KHLWHFTGThTRF=RGFIBhIBRhRFKHLWH
6 simp2l KHLWHFTGThTRF=RGFIBhIBRhRFhT
7 simp12 KHLWHFTGThTRF=RGFIBhIBRhRFFT
8 2 3 ltrnco KHLWHhTFThFT
9 5 6 7 8 syl3anc KHLWHFTGThTRF=RGFIBhIBRhRFhFT
10 simp13 KHLWHFTGThTRF=RGFIBhIBRhRFGT
11 simp3 KHLWHFTGThTRF=RGFIBhIBRhRFFIBhIBRhRF
12 1 2 3 4 cdlemg46 KHLWHFThTFIBhIBRhRFRhFRF
13 5 7 6 11 12 syl121anc KHLWHFTGThTRF=RGFIBhIBRhRFRhFRF
14 simp2r KHLWHFTGThTRF=RGFIBhIBRhRFRF=RG
15 13 14 neeqtrd KHLWHFTGThTRF=RGFIBhIBRhRFRhFRG
16 2 3 4 cdlemg44 KHLWHhFTGTRhFRGhFG=GhF
17 5 9 10 15 16 syl121anc KHLWHFTGThTRF=RGFIBhIBRhRFhFG=GhF
18 coass GhF=GhF
19 17 18 eqtr4di KHLWHFTGThTRF=RGFIBhIBRhRFhFG=GhF
20 simp33 KHLWHFTGThTRF=RGFIBhIBRhRFRhRF
21 20 14 neeqtrd KHLWHFTGThTRF=RGFIBhIBRhRFRhRG
22 2 3 4 cdlemg44 KHLWHhTGTRhRGhG=Gh
23 5 6 10 21 22 syl121anc KHLWHFTGThTRF=RGFIBhIBRhRFhG=Gh
24 23 coeq1d KHLWHFTGThTRF=RGFIBhIBRhRFhGF=GhF
25 19 24 eqtr4d KHLWHFTGThTRF=RGFIBhIBRhRFhFG=hGF
26 coass hFG=hFG
27 coass hGF=hGF
28 25 26 27 3eqtr3g KHLWHFTGThTRF=RGFIBhIBRhRFhFG=hGF
29 28 coeq2d KHLWHFTGThTRF=RGFIBhIBRhRFh-1hFG=h-1hGF
30 coass h-1hFG=h-1hFG
31 1 2 3 ltrn1o KHLWHhTh:B1-1 ontoB
32 5 6 31 syl2anc KHLWHFTGThTRF=RGFIBhIBRhRFh:B1-1 ontoB
33 f1ococnv1 h:B1-1 ontoBh-1h=IB
34 32 33 syl KHLWHFTGThTRF=RGFIBhIBRhRFh-1h=IB
35 34 coeq1d KHLWHFTGThTRF=RGFIBhIBRhRFh-1hFG=IBFG
36 30 35 eqtr3id KHLWHFTGThTRF=RGFIBhIBRhRFh-1hFG=IBFG
37 2 3 ltrnco KHLWHFTGTFGT
38 5 7 10 37 syl3anc KHLWHFTGThTRF=RGFIBhIBRhRFFGT
39 1 2 3 ltrn1o KHLWHFGTFG:B1-1 ontoB
40 5 38 39 syl2anc KHLWHFTGThTRF=RGFIBhIBRhRFFG:B1-1 ontoB
41 f1of FG:B1-1 ontoBFG:BB
42 fcoi2 FG:BBIBFG=FG
43 40 41 42 3syl KHLWHFTGThTRF=RGFIBhIBRhRFIBFG=FG
44 36 43 eqtrd KHLWHFTGThTRF=RGFIBhIBRhRFh-1hFG=FG
45 coass h-1hGF=h-1hGF
46 34 coeq1d KHLWHFTGThTRF=RGFIBhIBRhRFh-1hGF=IBGF
47 45 46 eqtr3id KHLWHFTGThTRF=RGFIBhIBRhRFh-1hGF=IBGF
48 2 3 ltrnco KHLWHGTFTGFT
49 5 10 7 48 syl3anc KHLWHFTGThTRF=RGFIBhIBRhRFGFT
50 1 2 3 ltrn1o KHLWHGFTGF:B1-1 ontoB
51 5 49 50 syl2anc KHLWHFTGThTRF=RGFIBhIBRhRFGF:B1-1 ontoB
52 f1of GF:B1-1 ontoBGF:BB
53 fcoi2 GF:BBIBGF=GF
54 51 52 53 3syl KHLWHFTGThTRF=RGFIBhIBRhRFIBGF=GF
55 47 54 eqtrd KHLWHFTGThTRF=RGFIBhIBRhRFh-1hGF=GF
56 29 44 55 3eqtr3d KHLWHFTGThTRF=RGFIBhIBRhRFFG=GF