| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdlemg46.b | ⊢ 𝐵  =  ( Base ‘ 𝐾 ) | 
						
							| 2 |  | cdlemg46.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 3 |  | cdlemg46.t | ⊢ 𝑇  =  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 4 |  | cdlemg46.r | ⊢ 𝑅  =  ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 5 |  | simp11 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ℎ  ∈  𝑇  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 ) )  ∧  ( 𝐹  ≠  (  I   ↾  𝐵 )  ∧  ℎ  ≠  (  I   ↾  𝐵 )  ∧  ( 𝑅 ‘ ℎ )  ≠  ( 𝑅 ‘ 𝐹 ) ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 6 |  | simp2l | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ℎ  ∈  𝑇  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 ) )  ∧  ( 𝐹  ≠  (  I   ↾  𝐵 )  ∧  ℎ  ≠  (  I   ↾  𝐵 )  ∧  ( 𝑅 ‘ ℎ )  ≠  ( 𝑅 ‘ 𝐹 ) ) )  →  ℎ  ∈  𝑇 ) | 
						
							| 7 |  | simp12 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ℎ  ∈  𝑇  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 ) )  ∧  ( 𝐹  ≠  (  I   ↾  𝐵 )  ∧  ℎ  ≠  (  I   ↾  𝐵 )  ∧  ( 𝑅 ‘ ℎ )  ≠  ( 𝑅 ‘ 𝐹 ) ) )  →  𝐹  ∈  𝑇 ) | 
						
							| 8 | 2 3 | ltrnco | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ℎ  ∈  𝑇  ∧  𝐹  ∈  𝑇 )  →  ( ℎ  ∘  𝐹 )  ∈  𝑇 ) | 
						
							| 9 | 5 6 7 8 | syl3anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ℎ  ∈  𝑇  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 ) )  ∧  ( 𝐹  ≠  (  I   ↾  𝐵 )  ∧  ℎ  ≠  (  I   ↾  𝐵 )  ∧  ( 𝑅 ‘ ℎ )  ≠  ( 𝑅 ‘ 𝐹 ) ) )  →  ( ℎ  ∘  𝐹 )  ∈  𝑇 ) | 
						
							| 10 |  | simp13 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ℎ  ∈  𝑇  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 ) )  ∧  ( 𝐹  ≠  (  I   ↾  𝐵 )  ∧  ℎ  ≠  (  I   ↾  𝐵 )  ∧  ( 𝑅 ‘ ℎ )  ≠  ( 𝑅 ‘ 𝐹 ) ) )  →  𝐺  ∈  𝑇 ) | 
						
							| 11 |  | simp3 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ℎ  ∈  𝑇  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 ) )  ∧  ( 𝐹  ≠  (  I   ↾  𝐵 )  ∧  ℎ  ≠  (  I   ↾  𝐵 )  ∧  ( 𝑅 ‘ ℎ )  ≠  ( 𝑅 ‘ 𝐹 ) ) )  →  ( 𝐹  ≠  (  I   ↾  𝐵 )  ∧  ℎ  ≠  (  I   ↾  𝐵 )  ∧  ( 𝑅 ‘ ℎ )  ≠  ( 𝑅 ‘ 𝐹 ) ) ) | 
						
							| 12 | 1 2 3 4 | cdlemg46 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ℎ  ∈  𝑇 )  ∧  ( 𝐹  ≠  (  I   ↾  𝐵 )  ∧  ℎ  ≠  (  I   ↾  𝐵 )  ∧  ( 𝑅 ‘ ℎ )  ≠  ( 𝑅 ‘ 𝐹 ) ) )  →  ( 𝑅 ‘ ( ℎ  ∘  𝐹 ) )  ≠  ( 𝑅 ‘ 𝐹 ) ) | 
						
							| 13 | 5 7 6 11 12 | syl121anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ℎ  ∈  𝑇  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 ) )  ∧  ( 𝐹  ≠  (  I   ↾  𝐵 )  ∧  ℎ  ≠  (  I   ↾  𝐵 )  ∧  ( 𝑅 ‘ ℎ )  ≠  ( 𝑅 ‘ 𝐹 ) ) )  →  ( 𝑅 ‘ ( ℎ  ∘  𝐹 ) )  ≠  ( 𝑅 ‘ 𝐹 ) ) | 
						
							| 14 |  | simp2r | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ℎ  ∈  𝑇  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 ) )  ∧  ( 𝐹  ≠  (  I   ↾  𝐵 )  ∧  ℎ  ≠  (  I   ↾  𝐵 )  ∧  ( 𝑅 ‘ ℎ )  ≠  ( 𝑅 ‘ 𝐹 ) ) )  →  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 ) ) | 
						
							| 15 | 13 14 | neeqtrd | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ℎ  ∈  𝑇  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 ) )  ∧  ( 𝐹  ≠  (  I   ↾  𝐵 )  ∧  ℎ  ≠  (  I   ↾  𝐵 )  ∧  ( 𝑅 ‘ ℎ )  ≠  ( 𝑅 ‘ 𝐹 ) ) )  →  ( 𝑅 ‘ ( ℎ  ∘  𝐹 ) )  ≠  ( 𝑅 ‘ 𝐺 ) ) | 
						
							| 16 | 2 3 4 | cdlemg44 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( ℎ  ∘  𝐹 )  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( 𝑅 ‘ ( ℎ  ∘  𝐹 ) )  ≠  ( 𝑅 ‘ 𝐺 ) )  →  ( ( ℎ  ∘  𝐹 )  ∘  𝐺 )  =  ( 𝐺  ∘  ( ℎ  ∘  𝐹 ) ) ) | 
						
							| 17 | 5 9 10 15 16 | syl121anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ℎ  ∈  𝑇  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 ) )  ∧  ( 𝐹  ≠  (  I   ↾  𝐵 )  ∧  ℎ  ≠  (  I   ↾  𝐵 )  ∧  ( 𝑅 ‘ ℎ )  ≠  ( 𝑅 ‘ 𝐹 ) ) )  →  ( ( ℎ  ∘  𝐹 )  ∘  𝐺 )  =  ( 𝐺  ∘  ( ℎ  ∘  𝐹 ) ) ) | 
						
							| 18 |  | coass | ⊢ ( ( 𝐺  ∘  ℎ )  ∘  𝐹 )  =  ( 𝐺  ∘  ( ℎ  ∘  𝐹 ) ) | 
						
							| 19 | 17 18 | eqtr4di | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ℎ  ∈  𝑇  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 ) )  ∧  ( 𝐹  ≠  (  I   ↾  𝐵 )  ∧  ℎ  ≠  (  I   ↾  𝐵 )  ∧  ( 𝑅 ‘ ℎ )  ≠  ( 𝑅 ‘ 𝐹 ) ) )  →  ( ( ℎ  ∘  𝐹 )  ∘  𝐺 )  =  ( ( 𝐺  ∘  ℎ )  ∘  𝐹 ) ) | 
						
							| 20 |  | simp33 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ℎ  ∈  𝑇  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 ) )  ∧  ( 𝐹  ≠  (  I   ↾  𝐵 )  ∧  ℎ  ≠  (  I   ↾  𝐵 )  ∧  ( 𝑅 ‘ ℎ )  ≠  ( 𝑅 ‘ 𝐹 ) ) )  →  ( 𝑅 ‘ ℎ )  ≠  ( 𝑅 ‘ 𝐹 ) ) | 
						
							| 21 | 20 14 | neeqtrd | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ℎ  ∈  𝑇  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 ) )  ∧  ( 𝐹  ≠  (  I   ↾  𝐵 )  ∧  ℎ  ≠  (  I   ↾  𝐵 )  ∧  ( 𝑅 ‘ ℎ )  ≠  ( 𝑅 ‘ 𝐹 ) ) )  →  ( 𝑅 ‘ ℎ )  ≠  ( 𝑅 ‘ 𝐺 ) ) | 
						
							| 22 | 2 3 4 | cdlemg44 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ℎ  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( 𝑅 ‘ ℎ )  ≠  ( 𝑅 ‘ 𝐺 ) )  →  ( ℎ  ∘  𝐺 )  =  ( 𝐺  ∘  ℎ ) ) | 
						
							| 23 | 5 6 10 21 22 | syl121anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ℎ  ∈  𝑇  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 ) )  ∧  ( 𝐹  ≠  (  I   ↾  𝐵 )  ∧  ℎ  ≠  (  I   ↾  𝐵 )  ∧  ( 𝑅 ‘ ℎ )  ≠  ( 𝑅 ‘ 𝐹 ) ) )  →  ( ℎ  ∘  𝐺 )  =  ( 𝐺  ∘  ℎ ) ) | 
						
							| 24 | 23 | coeq1d | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ℎ  ∈  𝑇  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 ) )  ∧  ( 𝐹  ≠  (  I   ↾  𝐵 )  ∧  ℎ  ≠  (  I   ↾  𝐵 )  ∧  ( 𝑅 ‘ ℎ )  ≠  ( 𝑅 ‘ 𝐹 ) ) )  →  ( ( ℎ  ∘  𝐺 )  ∘  𝐹 )  =  ( ( 𝐺  ∘  ℎ )  ∘  𝐹 ) ) | 
						
							| 25 | 19 24 | eqtr4d | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ℎ  ∈  𝑇  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 ) )  ∧  ( 𝐹  ≠  (  I   ↾  𝐵 )  ∧  ℎ  ≠  (  I   ↾  𝐵 )  ∧  ( 𝑅 ‘ ℎ )  ≠  ( 𝑅 ‘ 𝐹 ) ) )  →  ( ( ℎ  ∘  𝐹 )  ∘  𝐺 )  =  ( ( ℎ  ∘  𝐺 )  ∘  𝐹 ) ) | 
						
							| 26 |  | coass | ⊢ ( ( ℎ  ∘  𝐹 )  ∘  𝐺 )  =  ( ℎ  ∘  ( 𝐹  ∘  𝐺 ) ) | 
						
							| 27 |  | coass | ⊢ ( ( ℎ  ∘  𝐺 )  ∘  𝐹 )  =  ( ℎ  ∘  ( 𝐺  ∘  𝐹 ) ) | 
						
							| 28 | 25 26 27 | 3eqtr3g | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ℎ  ∈  𝑇  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 ) )  ∧  ( 𝐹  ≠  (  I   ↾  𝐵 )  ∧  ℎ  ≠  (  I   ↾  𝐵 )  ∧  ( 𝑅 ‘ ℎ )  ≠  ( 𝑅 ‘ 𝐹 ) ) )  →  ( ℎ  ∘  ( 𝐹  ∘  𝐺 ) )  =  ( ℎ  ∘  ( 𝐺  ∘  𝐹 ) ) ) | 
						
							| 29 | 28 | coeq2d | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ℎ  ∈  𝑇  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 ) )  ∧  ( 𝐹  ≠  (  I   ↾  𝐵 )  ∧  ℎ  ≠  (  I   ↾  𝐵 )  ∧  ( 𝑅 ‘ ℎ )  ≠  ( 𝑅 ‘ 𝐹 ) ) )  →  ( ◡ ℎ  ∘  ( ℎ  ∘  ( 𝐹  ∘  𝐺 ) ) )  =  ( ◡ ℎ  ∘  ( ℎ  ∘  ( 𝐺  ∘  𝐹 ) ) ) ) | 
						
							| 30 |  | coass | ⊢ ( ( ◡ ℎ  ∘  ℎ )  ∘  ( 𝐹  ∘  𝐺 ) )  =  ( ◡ ℎ  ∘  ( ℎ  ∘  ( 𝐹  ∘  𝐺 ) ) ) | 
						
							| 31 | 1 2 3 | ltrn1o | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ℎ  ∈  𝑇 )  →  ℎ : 𝐵 –1-1-onto→ 𝐵 ) | 
						
							| 32 | 5 6 31 | syl2anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ℎ  ∈  𝑇  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 ) )  ∧  ( 𝐹  ≠  (  I   ↾  𝐵 )  ∧  ℎ  ≠  (  I   ↾  𝐵 )  ∧  ( 𝑅 ‘ ℎ )  ≠  ( 𝑅 ‘ 𝐹 ) ) )  →  ℎ : 𝐵 –1-1-onto→ 𝐵 ) | 
						
							| 33 |  | f1ococnv1 | ⊢ ( ℎ : 𝐵 –1-1-onto→ 𝐵  →  ( ◡ ℎ  ∘  ℎ )  =  (  I   ↾  𝐵 ) ) | 
						
							| 34 | 32 33 | syl | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ℎ  ∈  𝑇  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 ) )  ∧  ( 𝐹  ≠  (  I   ↾  𝐵 )  ∧  ℎ  ≠  (  I   ↾  𝐵 )  ∧  ( 𝑅 ‘ ℎ )  ≠  ( 𝑅 ‘ 𝐹 ) ) )  →  ( ◡ ℎ  ∘  ℎ )  =  (  I   ↾  𝐵 ) ) | 
						
							| 35 | 34 | coeq1d | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ℎ  ∈  𝑇  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 ) )  ∧  ( 𝐹  ≠  (  I   ↾  𝐵 )  ∧  ℎ  ≠  (  I   ↾  𝐵 )  ∧  ( 𝑅 ‘ ℎ )  ≠  ( 𝑅 ‘ 𝐹 ) ) )  →  ( ( ◡ ℎ  ∘  ℎ )  ∘  ( 𝐹  ∘  𝐺 ) )  =  ( (  I   ↾  𝐵 )  ∘  ( 𝐹  ∘  𝐺 ) ) ) | 
						
							| 36 | 30 35 | eqtr3id | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ℎ  ∈  𝑇  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 ) )  ∧  ( 𝐹  ≠  (  I   ↾  𝐵 )  ∧  ℎ  ≠  (  I   ↾  𝐵 )  ∧  ( 𝑅 ‘ ℎ )  ≠  ( 𝑅 ‘ 𝐹 ) ) )  →  ( ◡ ℎ  ∘  ( ℎ  ∘  ( 𝐹  ∘  𝐺 ) ) )  =  ( (  I   ↾  𝐵 )  ∘  ( 𝐹  ∘  𝐺 ) ) ) | 
						
							| 37 | 2 3 | ltrnco | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  →  ( 𝐹  ∘  𝐺 )  ∈  𝑇 ) | 
						
							| 38 | 5 7 10 37 | syl3anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ℎ  ∈  𝑇  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 ) )  ∧  ( 𝐹  ≠  (  I   ↾  𝐵 )  ∧  ℎ  ≠  (  I   ↾  𝐵 )  ∧  ( 𝑅 ‘ ℎ )  ≠  ( 𝑅 ‘ 𝐹 ) ) )  →  ( 𝐹  ∘  𝐺 )  ∈  𝑇 ) | 
						
							| 39 | 1 2 3 | ltrn1o | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∘  𝐺 )  ∈  𝑇 )  →  ( 𝐹  ∘  𝐺 ) : 𝐵 –1-1-onto→ 𝐵 ) | 
						
							| 40 | 5 38 39 | syl2anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ℎ  ∈  𝑇  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 ) )  ∧  ( 𝐹  ≠  (  I   ↾  𝐵 )  ∧  ℎ  ≠  (  I   ↾  𝐵 )  ∧  ( 𝑅 ‘ ℎ )  ≠  ( 𝑅 ‘ 𝐹 ) ) )  →  ( 𝐹  ∘  𝐺 ) : 𝐵 –1-1-onto→ 𝐵 ) | 
						
							| 41 |  | f1of | ⊢ ( ( 𝐹  ∘  𝐺 ) : 𝐵 –1-1-onto→ 𝐵  →  ( 𝐹  ∘  𝐺 ) : 𝐵 ⟶ 𝐵 ) | 
						
							| 42 |  | fcoi2 | ⊢ ( ( 𝐹  ∘  𝐺 ) : 𝐵 ⟶ 𝐵  →  ( (  I   ↾  𝐵 )  ∘  ( 𝐹  ∘  𝐺 ) )  =  ( 𝐹  ∘  𝐺 ) ) | 
						
							| 43 | 40 41 42 | 3syl | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ℎ  ∈  𝑇  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 ) )  ∧  ( 𝐹  ≠  (  I   ↾  𝐵 )  ∧  ℎ  ≠  (  I   ↾  𝐵 )  ∧  ( 𝑅 ‘ ℎ )  ≠  ( 𝑅 ‘ 𝐹 ) ) )  →  ( (  I   ↾  𝐵 )  ∘  ( 𝐹  ∘  𝐺 ) )  =  ( 𝐹  ∘  𝐺 ) ) | 
						
							| 44 | 36 43 | eqtrd | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ℎ  ∈  𝑇  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 ) )  ∧  ( 𝐹  ≠  (  I   ↾  𝐵 )  ∧  ℎ  ≠  (  I   ↾  𝐵 )  ∧  ( 𝑅 ‘ ℎ )  ≠  ( 𝑅 ‘ 𝐹 ) ) )  →  ( ◡ ℎ  ∘  ( ℎ  ∘  ( 𝐹  ∘  𝐺 ) ) )  =  ( 𝐹  ∘  𝐺 ) ) | 
						
							| 45 |  | coass | ⊢ ( ( ◡ ℎ  ∘  ℎ )  ∘  ( 𝐺  ∘  𝐹 ) )  =  ( ◡ ℎ  ∘  ( ℎ  ∘  ( 𝐺  ∘  𝐹 ) ) ) | 
						
							| 46 | 34 | coeq1d | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ℎ  ∈  𝑇  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 ) )  ∧  ( 𝐹  ≠  (  I   ↾  𝐵 )  ∧  ℎ  ≠  (  I   ↾  𝐵 )  ∧  ( 𝑅 ‘ ℎ )  ≠  ( 𝑅 ‘ 𝐹 ) ) )  →  ( ( ◡ ℎ  ∘  ℎ )  ∘  ( 𝐺  ∘  𝐹 ) )  =  ( (  I   ↾  𝐵 )  ∘  ( 𝐺  ∘  𝐹 ) ) ) | 
						
							| 47 | 45 46 | eqtr3id | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ℎ  ∈  𝑇  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 ) )  ∧  ( 𝐹  ≠  (  I   ↾  𝐵 )  ∧  ℎ  ≠  (  I   ↾  𝐵 )  ∧  ( 𝑅 ‘ ℎ )  ≠  ( 𝑅 ‘ 𝐹 ) ) )  →  ( ◡ ℎ  ∘  ( ℎ  ∘  ( 𝐺  ∘  𝐹 ) ) )  =  ( (  I   ↾  𝐵 )  ∘  ( 𝐺  ∘  𝐹 ) ) ) | 
						
							| 48 | 2 3 | ltrnco | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐺  ∈  𝑇  ∧  𝐹  ∈  𝑇 )  →  ( 𝐺  ∘  𝐹 )  ∈  𝑇 ) | 
						
							| 49 | 5 10 7 48 | syl3anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ℎ  ∈  𝑇  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 ) )  ∧  ( 𝐹  ≠  (  I   ↾  𝐵 )  ∧  ℎ  ≠  (  I   ↾  𝐵 )  ∧  ( 𝑅 ‘ ℎ )  ≠  ( 𝑅 ‘ 𝐹 ) ) )  →  ( 𝐺  ∘  𝐹 )  ∈  𝑇 ) | 
						
							| 50 | 1 2 3 | ltrn1o | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐺  ∘  𝐹 )  ∈  𝑇 )  →  ( 𝐺  ∘  𝐹 ) : 𝐵 –1-1-onto→ 𝐵 ) | 
						
							| 51 | 5 49 50 | syl2anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ℎ  ∈  𝑇  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 ) )  ∧  ( 𝐹  ≠  (  I   ↾  𝐵 )  ∧  ℎ  ≠  (  I   ↾  𝐵 )  ∧  ( 𝑅 ‘ ℎ )  ≠  ( 𝑅 ‘ 𝐹 ) ) )  →  ( 𝐺  ∘  𝐹 ) : 𝐵 –1-1-onto→ 𝐵 ) | 
						
							| 52 |  | f1of | ⊢ ( ( 𝐺  ∘  𝐹 ) : 𝐵 –1-1-onto→ 𝐵  →  ( 𝐺  ∘  𝐹 ) : 𝐵 ⟶ 𝐵 ) | 
						
							| 53 |  | fcoi2 | ⊢ ( ( 𝐺  ∘  𝐹 ) : 𝐵 ⟶ 𝐵  →  ( (  I   ↾  𝐵 )  ∘  ( 𝐺  ∘  𝐹 ) )  =  ( 𝐺  ∘  𝐹 ) ) | 
						
							| 54 | 51 52 53 | 3syl | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ℎ  ∈  𝑇  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 ) )  ∧  ( 𝐹  ≠  (  I   ↾  𝐵 )  ∧  ℎ  ≠  (  I   ↾  𝐵 )  ∧  ( 𝑅 ‘ ℎ )  ≠  ( 𝑅 ‘ 𝐹 ) ) )  →  ( (  I   ↾  𝐵 )  ∘  ( 𝐺  ∘  𝐹 ) )  =  ( 𝐺  ∘  𝐹 ) ) | 
						
							| 55 | 47 54 | eqtrd | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ℎ  ∈  𝑇  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 ) )  ∧  ( 𝐹  ≠  (  I   ↾  𝐵 )  ∧  ℎ  ≠  (  I   ↾  𝐵 )  ∧  ( 𝑅 ‘ ℎ )  ≠  ( 𝑅 ‘ 𝐹 ) ) )  →  ( ◡ ℎ  ∘  ( ℎ  ∘  ( 𝐺  ∘  𝐹 ) ) )  =  ( 𝐺  ∘  𝐹 ) ) | 
						
							| 56 | 29 44 55 | 3eqtr3d | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( ℎ  ∈  𝑇  ∧  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 ) )  ∧  ( 𝐹  ≠  (  I   ↾  𝐵 )  ∧  ℎ  ≠  (  I   ↾  𝐵 )  ∧  ( 𝑅 ‘ ℎ )  ≠  ( 𝑅 ‘ 𝐹 ) ) )  →  ( 𝐹  ∘  𝐺 )  =  ( 𝐺  ∘  𝐹 ) ) |