Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg46.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
cdlemg46.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
3 |
|
cdlemg46.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
cdlemg46.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
simp11 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ℎ ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ ℎ ) ≠ ( 𝑅 ‘ 𝐹 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
6 |
|
simp2l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ℎ ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ ℎ ) ≠ ( 𝑅 ‘ 𝐹 ) ) ) → ℎ ∈ 𝑇 ) |
7 |
|
simp12 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ℎ ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ ℎ ) ≠ ( 𝑅 ‘ 𝐹 ) ) ) → 𝐹 ∈ 𝑇 ) |
8 |
2 3
|
ltrnco |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ℎ ∈ 𝑇 ∧ 𝐹 ∈ 𝑇 ) → ( ℎ ∘ 𝐹 ) ∈ 𝑇 ) |
9 |
5 6 7 8
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ℎ ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ ℎ ) ≠ ( 𝑅 ‘ 𝐹 ) ) ) → ( ℎ ∘ 𝐹 ) ∈ 𝑇 ) |
10 |
|
simp13 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ℎ ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ ℎ ) ≠ ( 𝑅 ‘ 𝐹 ) ) ) → 𝐺 ∈ 𝑇 ) |
11 |
|
simp3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ℎ ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ ℎ ) ≠ ( 𝑅 ‘ 𝐹 ) ) ) → ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ ℎ ) ≠ ( 𝑅 ‘ 𝐹 ) ) ) |
12 |
1 2 3 4
|
cdlemg46 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ℎ ∈ 𝑇 ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ ℎ ) ≠ ( 𝑅 ‘ 𝐹 ) ) ) → ( 𝑅 ‘ ( ℎ ∘ 𝐹 ) ) ≠ ( 𝑅 ‘ 𝐹 ) ) |
13 |
5 7 6 11 12
|
syl121anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ℎ ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ ℎ ) ≠ ( 𝑅 ‘ 𝐹 ) ) ) → ( 𝑅 ‘ ( ℎ ∘ 𝐹 ) ) ≠ ( 𝑅 ‘ 𝐹 ) ) |
14 |
|
simp2r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ℎ ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ ℎ ) ≠ ( 𝑅 ‘ 𝐹 ) ) ) → ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) |
15 |
13 14
|
neeqtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ℎ ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ ℎ ) ≠ ( 𝑅 ‘ 𝐹 ) ) ) → ( 𝑅 ‘ ( ℎ ∘ 𝐹 ) ) ≠ ( 𝑅 ‘ 𝐺 ) ) |
16 |
2 3 4
|
cdlemg44 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( ℎ ∘ 𝐹 ) ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑅 ‘ ( ℎ ∘ 𝐹 ) ) ≠ ( 𝑅 ‘ 𝐺 ) ) → ( ( ℎ ∘ 𝐹 ) ∘ 𝐺 ) = ( 𝐺 ∘ ( ℎ ∘ 𝐹 ) ) ) |
17 |
5 9 10 15 16
|
syl121anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ℎ ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ ℎ ) ≠ ( 𝑅 ‘ 𝐹 ) ) ) → ( ( ℎ ∘ 𝐹 ) ∘ 𝐺 ) = ( 𝐺 ∘ ( ℎ ∘ 𝐹 ) ) ) |
18 |
|
coass |
⊢ ( ( 𝐺 ∘ ℎ ) ∘ 𝐹 ) = ( 𝐺 ∘ ( ℎ ∘ 𝐹 ) ) |
19 |
17 18
|
eqtr4di |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ℎ ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ ℎ ) ≠ ( 𝑅 ‘ 𝐹 ) ) ) → ( ( ℎ ∘ 𝐹 ) ∘ 𝐺 ) = ( ( 𝐺 ∘ ℎ ) ∘ 𝐹 ) ) |
20 |
|
simp33 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ℎ ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ ℎ ) ≠ ( 𝑅 ‘ 𝐹 ) ) ) → ( 𝑅 ‘ ℎ ) ≠ ( 𝑅 ‘ 𝐹 ) ) |
21 |
20 14
|
neeqtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ℎ ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ ℎ ) ≠ ( 𝑅 ‘ 𝐹 ) ) ) → ( 𝑅 ‘ ℎ ) ≠ ( 𝑅 ‘ 𝐺 ) ) |
22 |
2 3 4
|
cdlemg44 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ℎ ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑅 ‘ ℎ ) ≠ ( 𝑅 ‘ 𝐺 ) ) → ( ℎ ∘ 𝐺 ) = ( 𝐺 ∘ ℎ ) ) |
23 |
5 6 10 21 22
|
syl121anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ℎ ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ ℎ ) ≠ ( 𝑅 ‘ 𝐹 ) ) ) → ( ℎ ∘ 𝐺 ) = ( 𝐺 ∘ ℎ ) ) |
24 |
23
|
coeq1d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ℎ ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ ℎ ) ≠ ( 𝑅 ‘ 𝐹 ) ) ) → ( ( ℎ ∘ 𝐺 ) ∘ 𝐹 ) = ( ( 𝐺 ∘ ℎ ) ∘ 𝐹 ) ) |
25 |
19 24
|
eqtr4d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ℎ ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ ℎ ) ≠ ( 𝑅 ‘ 𝐹 ) ) ) → ( ( ℎ ∘ 𝐹 ) ∘ 𝐺 ) = ( ( ℎ ∘ 𝐺 ) ∘ 𝐹 ) ) |
26 |
|
coass |
⊢ ( ( ℎ ∘ 𝐹 ) ∘ 𝐺 ) = ( ℎ ∘ ( 𝐹 ∘ 𝐺 ) ) |
27 |
|
coass |
⊢ ( ( ℎ ∘ 𝐺 ) ∘ 𝐹 ) = ( ℎ ∘ ( 𝐺 ∘ 𝐹 ) ) |
28 |
25 26 27
|
3eqtr3g |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ℎ ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ ℎ ) ≠ ( 𝑅 ‘ 𝐹 ) ) ) → ( ℎ ∘ ( 𝐹 ∘ 𝐺 ) ) = ( ℎ ∘ ( 𝐺 ∘ 𝐹 ) ) ) |
29 |
28
|
coeq2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ℎ ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ ℎ ) ≠ ( 𝑅 ‘ 𝐹 ) ) ) → ( ◡ ℎ ∘ ( ℎ ∘ ( 𝐹 ∘ 𝐺 ) ) ) = ( ◡ ℎ ∘ ( ℎ ∘ ( 𝐺 ∘ 𝐹 ) ) ) ) |
30 |
|
coass |
⊢ ( ( ◡ ℎ ∘ ℎ ) ∘ ( 𝐹 ∘ 𝐺 ) ) = ( ◡ ℎ ∘ ( ℎ ∘ ( 𝐹 ∘ 𝐺 ) ) ) |
31 |
1 2 3
|
ltrn1o |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ℎ ∈ 𝑇 ) → ℎ : 𝐵 –1-1-onto→ 𝐵 ) |
32 |
5 6 31
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ℎ ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ ℎ ) ≠ ( 𝑅 ‘ 𝐹 ) ) ) → ℎ : 𝐵 –1-1-onto→ 𝐵 ) |
33 |
|
f1ococnv1 |
⊢ ( ℎ : 𝐵 –1-1-onto→ 𝐵 → ( ◡ ℎ ∘ ℎ ) = ( I ↾ 𝐵 ) ) |
34 |
32 33
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ℎ ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ ℎ ) ≠ ( 𝑅 ‘ 𝐹 ) ) ) → ( ◡ ℎ ∘ ℎ ) = ( I ↾ 𝐵 ) ) |
35 |
34
|
coeq1d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ℎ ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ ℎ ) ≠ ( 𝑅 ‘ 𝐹 ) ) ) → ( ( ◡ ℎ ∘ ℎ ) ∘ ( 𝐹 ∘ 𝐺 ) ) = ( ( I ↾ 𝐵 ) ∘ ( 𝐹 ∘ 𝐺 ) ) ) |
36 |
30 35
|
eqtr3id |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ℎ ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ ℎ ) ≠ ( 𝑅 ‘ 𝐹 ) ) ) → ( ◡ ℎ ∘ ( ℎ ∘ ( 𝐹 ∘ 𝐺 ) ) ) = ( ( I ↾ 𝐵 ) ∘ ( 𝐹 ∘ 𝐺 ) ) ) |
37 |
2 3
|
ltrnco |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) → ( 𝐹 ∘ 𝐺 ) ∈ 𝑇 ) |
38 |
5 7 10 37
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ℎ ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ ℎ ) ≠ ( 𝑅 ‘ 𝐹 ) ) ) → ( 𝐹 ∘ 𝐺 ) ∈ 𝑇 ) |
39 |
1 2 3
|
ltrn1o |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∘ 𝐺 ) ∈ 𝑇 ) → ( 𝐹 ∘ 𝐺 ) : 𝐵 –1-1-onto→ 𝐵 ) |
40 |
5 38 39
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ℎ ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ ℎ ) ≠ ( 𝑅 ‘ 𝐹 ) ) ) → ( 𝐹 ∘ 𝐺 ) : 𝐵 –1-1-onto→ 𝐵 ) |
41 |
|
f1of |
⊢ ( ( 𝐹 ∘ 𝐺 ) : 𝐵 –1-1-onto→ 𝐵 → ( 𝐹 ∘ 𝐺 ) : 𝐵 ⟶ 𝐵 ) |
42 |
|
fcoi2 |
⊢ ( ( 𝐹 ∘ 𝐺 ) : 𝐵 ⟶ 𝐵 → ( ( I ↾ 𝐵 ) ∘ ( 𝐹 ∘ 𝐺 ) ) = ( 𝐹 ∘ 𝐺 ) ) |
43 |
40 41 42
|
3syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ℎ ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ ℎ ) ≠ ( 𝑅 ‘ 𝐹 ) ) ) → ( ( I ↾ 𝐵 ) ∘ ( 𝐹 ∘ 𝐺 ) ) = ( 𝐹 ∘ 𝐺 ) ) |
44 |
36 43
|
eqtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ℎ ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ ℎ ) ≠ ( 𝑅 ‘ 𝐹 ) ) ) → ( ◡ ℎ ∘ ( ℎ ∘ ( 𝐹 ∘ 𝐺 ) ) ) = ( 𝐹 ∘ 𝐺 ) ) |
45 |
|
coass |
⊢ ( ( ◡ ℎ ∘ ℎ ) ∘ ( 𝐺 ∘ 𝐹 ) ) = ( ◡ ℎ ∘ ( ℎ ∘ ( 𝐺 ∘ 𝐹 ) ) ) |
46 |
34
|
coeq1d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ℎ ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ ℎ ) ≠ ( 𝑅 ‘ 𝐹 ) ) ) → ( ( ◡ ℎ ∘ ℎ ) ∘ ( 𝐺 ∘ 𝐹 ) ) = ( ( I ↾ 𝐵 ) ∘ ( 𝐺 ∘ 𝐹 ) ) ) |
47 |
45 46
|
eqtr3id |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ℎ ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ ℎ ) ≠ ( 𝑅 ‘ 𝐹 ) ) ) → ( ◡ ℎ ∘ ( ℎ ∘ ( 𝐺 ∘ 𝐹 ) ) ) = ( ( I ↾ 𝐵 ) ∘ ( 𝐺 ∘ 𝐹 ) ) ) |
48 |
2 3
|
ltrnco |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐺 ∈ 𝑇 ∧ 𝐹 ∈ 𝑇 ) → ( 𝐺 ∘ 𝐹 ) ∈ 𝑇 ) |
49 |
5 10 7 48
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ℎ ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ ℎ ) ≠ ( 𝑅 ‘ 𝐹 ) ) ) → ( 𝐺 ∘ 𝐹 ) ∈ 𝑇 ) |
50 |
1 2 3
|
ltrn1o |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐺 ∘ 𝐹 ) ∈ 𝑇 ) → ( 𝐺 ∘ 𝐹 ) : 𝐵 –1-1-onto→ 𝐵 ) |
51 |
5 49 50
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ℎ ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ ℎ ) ≠ ( 𝑅 ‘ 𝐹 ) ) ) → ( 𝐺 ∘ 𝐹 ) : 𝐵 –1-1-onto→ 𝐵 ) |
52 |
|
f1of |
⊢ ( ( 𝐺 ∘ 𝐹 ) : 𝐵 –1-1-onto→ 𝐵 → ( 𝐺 ∘ 𝐹 ) : 𝐵 ⟶ 𝐵 ) |
53 |
|
fcoi2 |
⊢ ( ( 𝐺 ∘ 𝐹 ) : 𝐵 ⟶ 𝐵 → ( ( I ↾ 𝐵 ) ∘ ( 𝐺 ∘ 𝐹 ) ) = ( 𝐺 ∘ 𝐹 ) ) |
54 |
51 52 53
|
3syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ℎ ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ ℎ ) ≠ ( 𝑅 ‘ 𝐹 ) ) ) → ( ( I ↾ 𝐵 ) ∘ ( 𝐺 ∘ 𝐹 ) ) = ( 𝐺 ∘ 𝐹 ) ) |
55 |
47 54
|
eqtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ℎ ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ ℎ ) ≠ ( 𝑅 ‘ 𝐹 ) ) ) → ( ◡ ℎ ∘ ( ℎ ∘ ( 𝐺 ∘ 𝐹 ) ) ) = ( 𝐺 ∘ 𝐹 ) ) |
56 |
29 44 55
|
3eqtr3d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ℎ ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ ℎ ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ ℎ ) ≠ ( 𝑅 ‘ 𝐹 ) ) ) → ( 𝐹 ∘ 𝐺 ) = ( 𝐺 ∘ 𝐹 ) ) |