Metamath Proof Explorer


Theorem cdlemg48

Description: Eliminate h from cdlemg47 . (Contributed by NM, 5-Jun-2013)

Ref Expression
Hypotheses cdlemg46.b B = Base K
cdlemg46.h H = LHyp K
cdlemg46.t T = LTrn K W
cdlemg46.r R = trL K W
Assertion cdlemg48 K HL W H F T G T F I B R F = R G F G = G F

Proof

Step Hyp Ref Expression
1 cdlemg46.b B = Base K
2 cdlemg46.h H = LHyp K
3 cdlemg46.t T = LTrn K W
4 cdlemg46.r R = trL K W
5 1 2 3 4 cdlemftr1 K HL W H h T h I B R h R F
6 5 3ad2ant1 K HL W H F T G T F I B R F = R G h T h I B R h R F
7 simp11 K HL W H F T G T F I B R F = R G h T h I B R h R F K HL W H
8 simp12l K HL W H F T G T F I B R F = R G h T h I B R h R F F T
9 simp12r K HL W H F T G T F I B R F = R G h T h I B R h R F G T
10 simp2 K HL W H F T G T F I B R F = R G h T h I B R h R F h T
11 simp13r K HL W H F T G T F I B R F = R G h T h I B R h R F R F = R G
12 simp13l K HL W H F T G T F I B R F = R G h T h I B R h R F F I B
13 simp3l K HL W H F T G T F I B R F = R G h T h I B R h R F h I B
14 simp3r K HL W H F T G T F I B R F = R G h T h I B R h R F R h R F
15 1 2 3 4 cdlemg47 K HL W H F T G T h T R F = R G F I B h I B R h R F F G = G F
16 7 8 9 10 11 12 13 14 15 syl323anc K HL W H F T G T F I B R F = R G h T h I B R h R F F G = G F
17 16 rexlimdv3a K HL W H F T G T F I B R F = R G h T h I B R h R F F G = G F
18 6 17 mpd K HL W H F T G T F I B R F = R G F G = G F